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A B S T R A C T   

Although agroecosystems have a significant potential to offset carbon dioxide (CO2), the amount of CO2 captured 
can vary significantly depending on management practices. Accurate estimation of gross primary production 
(GPP) and transpiration (T) of agroecosystems at the field scale are essential for the study of food security and 
water resource management. To date, the carbon and water fluxes data products for commercial agroecosystems 
are limited, mostly at the moderate spatial resolution (MSR, hundreds of meters), which cannot be used to assess 
the temporal dynamics of GPP and T at the field scale. This study used the vegetation photosynthesis model 
(VPM) and vegetation transpiration model (VTM) to estimate field-level daily GPP (GPPVPM) and T (TVTM), 
respectively, in native prairie, alfalfa (Medicago sativa L.), and winter wheat (Triticum aestivum L.) in central 
Oklahoma, USA. We evaluated the reliability and advantages of vegetation indices (enhanced vegetation index, 
EVI and land surface water index, LSWI) in monitoring the land surface phenology using moderate spatial res-
olution data from Moderate Resolution Imaging Spectroradiometer (MODIS) and high spatial resolution (HSR, 
tens of meters) data from Landsat and Sentinel-2. The accuracy of GPPVPM and TVTM estimates at different spatial 
scales was evaluated using GPP (GPPEC) and evapotranspiration (ETEC) from the eddy flux tower sites, respec-
tively. Results demonstrate the capacity of VPM and VTM to estimate the field-level carbon and water flux 
dynamics and their responses to weather conditions. The use of HSR vegetation indices helped to address certain 
challenges faced by MSR indices, especially in capturing the crop phenology in smaller areas with conservation 
measures or disturbances. The findings highlight the importance of using HSR GPP estimates to reduce uncer-
tainty in quantifying CO2 fluxes for croplands and grasslands. The findings also demonstrate the ability of the 
models to track field-level vegetation phenology, carbon uptake, and water use in agroecosystems under different 
management practices.   

1. Introduction 

Monitoring crop productivity and improving water use of croplands 
and grasslands is essential for food security and sustainable agriculture, 
particularly with the growing food demand and the increasing chal-
lenges in the supply chain, land availability, and field productivity 
(Barrett, 2021; Tilman et al., 2011). Native prairie is important for 
livestock production and has been extensively transformed into pastures 
(e.g., alfalfa, Medicago sativa L.) and croplands (e.g., winter wheat, Tri-
ticum aestivum L.) in the U.S. Southern Great Plains (Bajgain et al., 2018). 

Alfalfa is a high-quality perennial legume used for cattle grazing or hay 
harvest (Wagle et al., 2019a). Winter wheat is one of the most widely 
grown grain crops in the world and is often used for dual-purpose (cattle 
grazing and grain production) in the U.S. Southern Great Plains (Red-
mon et al., 1995; Wagle et al., 2018). Grasslands and croplands have 
varying potentials for carbon sequestration, dependent upon climate 
and different management practices (Guan et al., 2016). As the gross 
primary production (GPP) of native tallgrass prairie, alfalfa, and winter 
wheat is affected substantially by varying climates and management 
practices, it is important to better model and predict their responses to 
variable climates (Hlisnikovský et al., 2023; Tucker et al., 1971). 
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Vegetation indices (VIs – which indicates different aspects of vege-
tation) from optical sensors (e.g., Moderate Resolution Imaging Spec-
troradiometer MODIS) have been used to support crop monitoring and 
delineate spatio-temporal variability of crop development (Duchemin 
et al., 2006). However, operational monitoring of crop phenology in 
feedstock systems is a challenging task due to field sizes and shape, 
different planting patterns, multiple crops and rotations, and the lack of 
consistent continuous observations at high spatial resolutions (Dong 
et al., 2020; Huang et al., 2019b; Misra et al., 2020; Peña-Barragán et al., 
2011). 

Gross primary production is the largest carbon flux in terrestrial 
ecosystems, and it represents the CO2 captured by vegetation via 
photosynthesis (Beer et al., 2010; Campbell et al., 2017). GPP is crucial 
for the ecosystem’s biomass production (Lambers et al., 2008), and it is 
often used as one of the major variables in assessing the terrestrial 
carbon cycle and crop productivity. Since GPP cannot be directly 
measured at the ecosystem scale, there are many techniques to model 
and predict it, including machine learning algorithms based on eddy 
covariance (EC) data, process-based models, statistical models, and light 
use efficiency (LUE) models (Celis et al., 2023; Joiner et al., 2018; 
Mäkelä et al., 2008; Wu et al., 2010; Yuan et al., 2007). The LUE-based 
GPP models are widely used due to simplicity and data availability 
(Celis et al., 2023; Zhang et al., 2017). The LUE-based GPP models are 
based on solar energy that is absorbed by vegetation (light absorption) 
and LUE that is affected by environmental conditions (e.g., temperature 
and water stress) (Chang et al., 2021; M. M. Huang et al., 2019). The 
LUE-based GPP models can be categorized based on their approaches for 
computing (1) the amount of light absorption and (2) the LUE. Some 

LUE models estimate light absorption by vegetation canopy (APARca-

nopy) (Jacquemoud et al., 2009; Running et al., 2015), while some LUE 
models estimate light absorption by chlorophyll in the canopy (APARchl) 
(Wang and Leuning, 1998; Xiao et al., 2004). Zhang et al. (2017) 
highlighted the limitation and impact of the APARcanopy in the 
LUE-based MOD17 GPP product (Running et al., 2004) to represent the 
seasonal changes in vegetation photosynthetic capacity, resulting in 
moderate to large underestimation of GPP in croplands and grasslands 
(Wagle et al., 2014) as shown in cross-site synthesis studies (Wang et al., 
2017). Studies have underlined the strong performance of the vegetation 
photosynthesis model (VPM), which uses the energy absorbed by chlo-
rophyll (APARchl) to estimate daily GPP (Xiao et al., 2004; Zhang et al., 
2017). Secondly, there are different ways to estimate maximum LUE and 
assess the effects of environmental factors (e.g., air temperature and 
water stress) on LUE (Chang et al., 2020; Zheng et al., 2018). However, 
many LUE-GPP models presume one optimum air temperature 
(T◦

opt-biome) for individual biome types under variable climates. The 
T◦

opt varies over time and across sites (Wagle et al., 2015a), and the 
assumption of a constant T◦

opt-biome for individual biomes can lead to 
significant uncertainties in GPP estimates (Richardson et al., 2012). In 
fact, a recent study by Chang et al. (2021) shows that these uncertainties 
could be as high as 10 Pg C/yr on the global scale. Other studies have 
also highlighted the importance of accounting for the effects of changing 
air temperatures on photosynthesis and GPP, particularly in the context 
of changing climate (Huang et al., 2019b; Xu et al., 2013). These studies 
underscore the need for improved models that can effectively capture 
the complex relationships among photosynthesis, temperature, and 
other environmental factors. 

Nomenclatures 

Acronyms and Abbreviations 
APAR Absorbed photosynthetically active radiation 
APARchl Absorbed photosynthetically active radiation by the 

chlorophyll 
CO2 Carbon dioxide 
cp Specific heat 
E Evaporation 
Ebs Bare soil evaporation 
EC Eddy covariance 
ECOSTRESS The Ecosystem Spaceborne Thermal Radiometer 

Experiment on Space Station 
ECT Eddy covariance tower 
ER Ecosystem respiration 
ET Evapotranspiration 
ETEC Evapotranspiration derived from the ECT 
EVI Enhanced vegetation index 
fPAR Fraction of photosynthetically active radiation 
G Ground soil heat flux 
GPP Gross primary production. 
GPPEC Gross primary production estimates from the ECT. 
GPPVPM− MOD Gross primary production estimates from VTM at 

MSR. 
GPPVPM-LS2 Gross primary production estimates from the VTM at 

HSR. 
H Sensible heat flux 
HSR High spatial resolution 
IR Infrared 
LE Latent heat flux 
LST Land surface temperature 
LSWI Land surface water index 
LUE(εg) Light use efficiency 
LUE0(ε0) Maximum light use efficiency 

MODIS Moderate Resolution Imaging Spectroradiometer 
MSR Moderate spatial resolution 
NBP Net ecosystem carbon balance 
NDVI Normalized differentiate vegetation index 
NEE Net ecosystem exchange 
NPP Net primary production 
NPV Non-photosynthetically active vegetation 
P-M Penman-Monteit 
PAR Photosynthetically active radiation 
PAV Photosynthetically active vegetation (chloroplast) 
PPFD Photosynthetic photon flux density 
QC Quality controls 
ra Aerodynamic resistance 
rc Canopy stomatal resistance 
Rn Net radiation 
SEB Surface energy balance 
SW Total incoming shortwave solar radiation 
SWIR Shortwave infrared 
T Transpiration 
TVTM-EC Transpiration estimates from VTM using EC data as input 
TVTM− MOD Transpiration estimates from VTM using MSR data as 

input 
TVTM-LS2 Transpiration estimates from VTM using HSR data as input 
TIR Thermal infrared 
Topt Optimal air temperature for photosynthesis 
u* friction velocity 
VIs Vegetation indices 
VPD Vapor pressure deficit 
VPM Vegetation photosynthesis model 
VTM Vegetation transpiration model 
WUE Water use efficiency 
γ Psychrometric constant 
Δ Vapor pressure–air temperature curve 
ρ Air density  
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Transpiration (T), the largest component of evapotranspiration (ET) 
in agroecosystems, is essential for crop growth assessment (Celis et al., 
2023). Measured T data products at the field scale are not available and 
often derived from partitioning ET [ET = evaporation (E – unproductive 
water loss) + T (productive water loss)]. Accurate T estimates are 
helpful to reduce E losses, improve irrigation scheduling, reduce costs of 
water and energy, and consequently support food security and improve 
water use efficiency (i.e., gain of carbon/water use) under the premise of 
growing more food with less water (Li et al., 2018; Liliane and Charles, 
2020; Wang et al., 2020). Nonetheless, the use of T and ET in agro-
ecosystems at the field level is limited due to the spatial resolution of 
existing remote sensing data products (Ai et al., 2020; Allen et al., 2007; 
Zhang et al., 2016), the inability to directly measure T at the field scale, 
the cost of deploying instrumentation to estimate T and ET over multiple 
fields in a single farm operation, and the complexity and uncertainty of 
ET partitioning methods (Kool et al., 2014). The Penman-Monteith (PM) 
approach (Monteith, 1965; Penman, 1948) has been successfully 
incorporated into multiple physical-based hydrological (Ivanov et al., 
2004) and agro-hydrological models with high accuracy in their T and 
ET estimates (Celis, 2019). However, the use and transferability of these 
models are limited, given their extensive parametrizations and depen-
dence on multiple physical variables that are not readily available. In 
addition, these models and other approaches using the PM equation 
have lower reliability in agroecosystems, due to structural uncertainties 
introduced by using static biophysical parameters (Mahfouf et al., 1996; 
Matsui et al., 2005; Vivoni et al., 2007). 

Satellite ET products such as MOD16 (Mu et al., 2011) are open 
source and frequently used to estimate ET in agroecosystems, but they 
have limitations due to factors such as cloud cover, water stress, and the 
coarse spatial (500 m) and temporal (8-day) resolutions of the data. 
Multiple studies have reported poor accuracy of the MOD16 ET product 
in multiple agroecosystems, particularly larger biases in irrigated fields 
(Souza et al., 2019; Velpuri et al., 2013). On the other hand, newer 
products like ECOSTRESS (Meerdink et al., 2019), which is freely 
available to the public at higher spatial resolution (70 m) and calculates 
ET based on land-surface temperature, have limitations as well. The 
limitations include infrequent revisit times, lack of ground-based vali-
dation, and structural uncertainties like a 0.85 ◦C cold bias in retrievals 
from temperatures below 21.85 ◦C (Hulley et al., 2022). Furthermore, 
several studies have reported overestimations of the ECOSTRESS 
(ECO3ETPTJPL and ECO3TEALEXI) data products in different landcover 
types including temperate humid forest (Liu et al., 2021), crop and 
grasslands ecosystems with significant positive bias in the instantaneous 
ET data product during morning time when compared with in-situ ET EC 
data (R2 = 0.23), and moderate linear relationships of the daily ET 
products (R2 = 0.40 and RMSE >40 W/m2) in agricultural landcover 
(Liang et al., 2022). The poor ET estimates directly impact the reliability 
and potential use for field-level water management and crop yield pre-
dictions. For these reasons, there is a need for a simpler, more accurate, 
and more transferable technique to obtain accurate T estimates at the 
field level in croplands and grasslands. 

This study employed VPM to estimate GPP and vegetation transpi-
ration model (VTM) (Alfieri et al., 2009) to estimate T in native prairie, 
alfalfa, and winter wheat flux sites in Oklahoma, USA. The major ob-
jectives of this study include: (1) assessing the consistency of vegetation 
indices (enhanced vegetation index, EVI and land surface water index, 
LSWI) from moderate spatial resolution (MSR - MODIS) and high spatial 
resolution (HSR - Landsat and Sentinel-2) images in tracking the land 
surface phenology and physiology of native prairie, alfalfa, and winter 
wheat, and (2) evaluating the performance of VPM in estimating GPP 
and VTM in estimating T in native prairie, alfalfa, and winter wheat 
using MSR and HSR images. This study improves our understanding of 
how spatial resolution affects the representation of carbon and water 
dynamics in cropland and grassland ecosystems, and how these dy-
namics vary in various land use types used for animal feeding. 
Improving our understanding of the effects of different management 

practices on carbon and water dynamics will allow us to make more 
informed decisions about sustainable agriculture. 

2. Materials and methods 

2.1. Study sites 

In this study, we selected three sites with different land cover types 
(native tallgrass prairie, alfalfa, and winter wheat) in central Oklahoma, 
USA. The sites are located at the USDA-ARS, Oklahoma and Central 
Plains Agricultural Research Center, El Reno, Oklahoma. The study area, 
displayed in Fig. 1, has a temperate continental climate, with an average 
(1981–2010) annual air temperature of 15 ◦C and mean annual pre-
cipitation of 925 mm (Wagle et al., 2019a). 

The tallgrass prairie site (35.5419 N, 98.0195◦W), covering 32 ha, 
was divided into nine paddocks. Eight paddocks were used for livestock 
grazing and one paddock was set as a control (no livestock grazing). The 
eight paddocks were rotationally grazed from 23 to 60-day periods by 11 
to 16 heads of yearling stocker cattle from May through July (Wagle 
et al., 2020). The soils are a diverse range of Mollisol, showcasing 
distinct families and subgroups with the Norge series silt loams being the 
most common soil type (Wagle et al., 2019). The dominant species at the 
site were warm-season grasses such as big bluestem (Andropogon gerardii 
Vitman), indiangrass (Sorghastrum nutans (L.) Nash), and little bluestem 
(Schizachryium scoparium(Michx.) Nash) (Wagle et al., 2020). In this 
study, we used satellite observations from paddock (P18-R4) with an 
area of 4.95 ha and a flux tower system as most contribution of eddy 
fluxes was limited to this paddock (Wagle et al., 2020). This paddock 
was grazed by 16 cattle heads between June 15 and July 31 in 2016, 
May 9 and July 8 in 2017, and May 23 and July 8 in 2018. According to 
previous works (Fischer et al., 2012; Northup et al., 2002), aboveground 
biomass production by mid-July is between 2 and 3 tons/ha (drought 
years) and 3–6.5 tons/ha (wet years), and planned level of forage 
removal by livestock grazing, which can be considered a field distur-
bance was approximately 1.5 ton/ha per year (Wagle et al., 2020). 

The Alfalfa site (35.5752 N, 98.0549◦W), covering 48 ha, is located 
at a low terrace adjacent to the bottomland along a permanent stream. 
The soil type is Dale (Fine-silty, mixed, thermic, Pachic Haplustolls) 
series, like silt loam. Alfalfa (cv. Cimarron 400) was planted in Fall 2012. 
The field was harvested for hay periodically during each growing season 
to provide forage for dairy cattle (Wagle et al., 2019a). The harvest dates 
in 2016 were May 18th, June 17th, July 13th, and October 7th. The 
harvest dates in 2017 were May 3rd, June 7th, July 6th, August 9th, and 
September 14th. Only the first harvest on May 17th, 2018 was included 
in our study period. 

The winter wheat (cv. Gallagher) site (35.5643◦N, 98.0614◦W), 
covering 28 ha, was sown at 19 cm row spacing and managed for high 
production potential using management practices common to the re-
gion, including fertilizer, herbicide, and pesticide applications (Wagle 
et al., 2018). Soils are a complex of Renfrow-Kirkland silt loams, 
Bethanysilt loams, and Norge silt loams (Mollisols) with an average pH 
≤5.8, electrical conductivity < 300μScm− 1, and soil bulk density (ρb) of 
1.34–1.45 g cm− 3 (USDA-NRCS, 1999). The winter wheat site (E1 – 
no-till field) was used for both livestock grazing and grain production 
during the 2017–2018 growing season, and grain production only dur-
ing the 2016–2017 and 2019–2020 growing seasons (Wagle et al., 
2021). 

2.2. Climate and CO2 flux data from the EC flux tower sites 

The EC measurements at the tallgrass prairie site were collected 
during the 2016 growing season (April–October) and from June 2017 to 
September 2018. The EC system at the alfalfa site was installed in late 
March 2016 near the center of the 48 ha field (Wagle et al., 2019). Data 
were collected for two years until May 2018. For the winter wheat site, 
the EC system was installed near the center of the field in September 
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2016. 
The EC systems in the three towers have an open-path infrared gas 

analyzer (LI-7500 RS, LI− COR Inc., NE, USA) and a 3-D CSAT3 sonic 
anemometer (Campbell Scientific Inc., UT, USA). The measurement 
height for all the EC towers in this study is 2.5 m from the ground surface 
with a fetch >200 m radius in most directions, and the EC data are 
collected at a 10 Hz frequency. Previous studies in these sites showed 
that over 80 % of the contribution to EC-measured fluxes was received 
from <100 m upwind distance of the flux towers (Wagle et al., 2018, 
2020). The EddyPro software version 6.2.0 (LI-COR Inc., NE, USA) was 
used to process raw EC data to obtain 30-min fluxes. Fluxes were 
screened for bad quality flags, unreliable fluxes, and outliers (greater 
than 3.5 times of standard deviation based on a 14-day running win-
dow) (Wagle et al., 2015b, 2019a, 2019). There are no observation 
techniques available to measure GPP directly at the field scale (Ma et al., 
2015). As a result, GPP can only be inferred from the partitioning of net 
ecosystem CO2 exchange (NEE), measured by EC systems based on the 
covariance between fluctuations in vertical wind velocity and fluctua-
tions in the concentration of CO2 (Anav et al., 2015; Reichstein et al., 
2005). The REddyProc package from the Max Planck Institute for 
Biogeochemistry, Germany was used to fill gaps in flux and meteoro-
logical data and to partition NEE into GPP and ecosystem respiration 
(ER) (Wagle et al., 2020). The GPP was calculated as the difference 
between the measured NEE and estimated ER that is estimated by the 
model based on the exponential relationships between air temperature 
and nighttime NEE (Cabral et al., 2013; Reichstein et al., 2002, 2005). 
The latent heat (LE) flux was used to calculate evapotranspiration (ET). 
The energy balance closure [EBC = (sensible heat + LE)/(net radiation – 
soil heat flux)], without any correction terms, for these sites was around 
0.75–80 % (Bajgain et al., 2018; Wagle et al., 2018), typical for the most 
EC flux sites. More details are available in previous studies (Wagle et al., 
2019a, 2019b, 2020). The time series of daily GPP fluxes were averaged 
at 8-day intervals to match the temporal resolution of the remote 
sensing-derived vegetation indices. 

Climate data for all three sites during 1/2016 - 11/2022 were 

obtained from the nearby El Reno Oklahoma Mesonet Station (ELRE, 
35.5484◦N, 98.0365◦W) (McPherson et al., 2007). Hourly air tempera-
ture and rainfall data were aggregated into daily averages and daily 
sums, respectively. Photosynthetically active radiation (PAR) data were 
estimated as 0.48 of total incoming shortwave radiation and converted 
into photosynthetic photon flux density (PPFD) using the approximation 
1 W m − 2 ≈ 4.57 μmol m − 2 s − 1 (Thimijan and Heins, 1983). 

2.3. Land surface reflectance and vegetation indices from MODIS, 
Landsat, and Sentinel-2 images 

The MOD09A1 Collection 6 product (Vermote et al., 2015) provides 
8-day estimates of surface reflectance at a 500 m spatial resolution. Two 
vegetation indices (VIs) for the MOD09A1 collection were calculated on 
Google Earth Engine (GEE) using the surface reflectance data. The 
quality band (QA), VIs, and surface reflectance time series were down-
loaded and assessed for quality control and used in the model. The 
enhanced vegetation index (EVI) (Huete et al., 1997) (Eq. (1)) and land 
surface water index (LSWI) (Xiao et al., 2004a.) (Eq. (2)) were calculated 
from surface reflectance data from blue, red, near infrared (NIR), and 
shortwave infrared (SWIR) bands. 

EVI= 2.5×(NIR − Red)/(NIR+ 6×Red − 7.5×Blue+ 1) (1)  

LSWI = (NIR − SWIR)/(NIR+SWIR) (2) 

Landsat provides surface reflectance data at 30 m spatial resolution 
and 16-day temporal resolution. In this study, we used the atmospher-
ically corrected surface reflectance data from the Landsat 7 ETM+

sensor and the operational land imager (OLI) Landsat 8 OLI/TIRS sen-
sors. The VIs were calculated for all the images available on GEE, and the 
time series VIs and surface reflectance data over the flux tower sites were 
downloaded and inspected for quality control using a cloud, shadow, 
water, and snow mask (Foga et al., 2017). In addition, the blue band was 
used to detect and remove dates with the presence of any cloudy and 
water pixels (Du et al., 2002). 

Fig. 1. The geographical locations and landscapes of the three study sites. The top left displays the study sites’ landcover map from the NLCD 2016. The longitude 
and latitude position information of the three eddy covariance (EC) flux tower sites (red dot). The individual fields P18, A1, and E1 are centered at the EC location 
with field boundaries in black with one 10 m Sentinel-2 pixel (red polygon), 30 m Landsat pixel (blue polygon), and Moderate Resolution Imaging Spectroradiometer 
(MODIS) pixel at 500 m (green polygon) spatial resolutions. 
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Sentinel-2 (S2) is a wide-swath (290 km), high-resolution, multi-
spectral imaging with a global 10-day revisit (or 5-day revisit if both S2 
satellites are combined). S2-A/B has 13 spectral bands: three for atmo-
spheric correction (60 m), four visible and NIR bands (10 m), and six 
red-edge, NIR and SWIR bands (20 m), and the VNIR and SWIR bands 
have similar spectral coverage to Landsat 8 (OLI/TIRS) (Storey et al., 
2016). In this study, we used the S2 orthorectified atmospherically 
corrected surface reflectance from a multispectral Instrument (MSI) 
available on GEE. The surface reflectance data quality control was 
completed after downloading the pixel time series, using the cloud bit 
mask, cirrus bit mask, and the blue band for detecting and removing 
dates with the presence of cloudy and water pixels (Du et al., 2002). 

The combined use of Landsat and Sentinel-2 provides a global 
average revisit of 4.6 days (Li and Roy, 2017). Furthermore, both sys-
tems provide a 12-bit radiometric resolution with similar reflective 
wavelengths (Drusch et al., 2012; Gascon et al., 2017; Irons et al., 2012) 
and information sensed over the same areas. The similarities between 
Landsat and Sentinel-2 spectral resolutions facilitate the combined use 
of their datasets in several different ways including data fusion, as re-
ported in previous studies. (Zhang et al., 2018). In this study, the surface 
reflectance time series data from Landsat and Sentinel-2 were combined 
without resampling the Landsat 30 m data into 10 m data, since the pixel 
chosen was within the tower footprint (within 100 m radius of the 
tower) (Wagle et al., 2018), but at least 30 m away from the EC tower to 
avoid biases due to field-instrument management and disturbances. For 
the pixel, time series Landsat and Sentinel-2 observations were com-
bined by their acquisition dates, and for those observations with over-
lapping dates from the two products, one observation was chosen based 
on the data quality (i.e., maximum NDVI) as in past studies (Gascon 
et al., 2017; Markham et al., 2014; Zhang et al., 2018). The resulting 
time series Landsat/Sentinel-2 data were used as input for daily simu-
lations of GPP and T. For comparison with 8-day MODIS composites, the 
combined time-series of optical data were further aggregated into 8-day 
composite data for VPM/VTM model simulations. 

2.4. Land surface phenology 

The land surface phenology (LSP) includes the start of the growing 
season (SOS), the end of the growing season (EOS), and the growing 
season length (GSL). The seasonal dynamics of the vegetation indices 
(EVI and LSWI) at the three sites reveal the LSP metrics in terms of the 
canopy structure and the process of crop development during the 
growing season. The EVI is related to chlorophyll content in the canopy 
and the LSWI is related to the water content in the canopy and soil 
surface (Xiao et al., 2009). Both EVI and LSWI have been used to identify 
the SOS and EOS. For example, the VI-based SOS is the starting period of 
EVI>0.1 and LSWI>0 in the spring, a criterion successfully applied over 
several types of crops and grasses (Xin et al., 2020;Zhang et al., 2022). 
The transition from LSWI<0 and LSWI>0 in the spring represents the 
emergence of green leaves, while the reverse transition from LSWI>0 to 
LSWI<0 in the fall/winter indicates the change from green plants to 
senescent phase. 

In this study, we used the vegetation indices (VI-based) method to 
identify the SOS (EVI>0.1 and LSWI>0) and the EOS (EVI<0.1 and 
LSWI<0). The accuracy of the VI-based method and thresholds used 
were compared using the EC-derived GPP data, where the SOS is the 
third continuous data point of GPP >1 g C m2 and the EOS takes place 
after 3 consecutive time periods of GPP <1 g C m2. 

2.5. Vegetation photosynthesis model (VPM) 

Eight-day average daily GPP (g C/m2/day) is estimated using VPM 
(Xiao et al., 2004), which calculates the amount of solar energy absor-
bed by vegetation chlorophyll (APARchl) and the light use efficiency 
(LUEg). The EVI is used as a proxy for FPARchl (5). 

GPP= APARchl ∗LUEg (3)  

APARchl= FPARchl∗PAR (4)  

FPARchl = (EVI − 0.1)∗1.25 (5)  

LUEg=LUE0∗Tscalar ∗Wscalar (6) 

LUE0 is the apparent quantum yield or maximum light use efficiency 
(μmol CO2 / μmol PPFD) and it has different values for C3 and C4 plants in 
the VPM. The LUE0 value used for C3 plants in our study was 0.42 g C 
mol− 1 PPFD, while the value for C4 vegetation was 0.64 g C mol− 1 PPFD 
(Ma et al., 2018; Yuan et al., 2007; Zhang et al., 2017). The VPM accounts 
for the presence of C3 and C4 plants in those areas that have both C3 and 
C4 plants by including the fractions of C3 plants (C3F) and C4 plants 
(C4F). The native tallgrass prairie site in this study is a mix of C3 and C4 
vegetation, and the mixing ratio used in the models was 20 % C3F and 80 
% C4F considering the presence of cool-season C3 grasses in spring and 
late fall and the domination of warm-season C4 grasses in summer. 

LUE0= LUE0− C3∗C3F+LUE0− C4∗C4F (7) 

The effects of air temperature and water stress on GPP (Chang et al., 
2021; M. M. Huang et al., 2019) are introduced by Tscalar and Wscalar, 
respectively. The LSWI was used to calculate Wscalar (Eq. (8)). The Tscalar 
was computed based on the Terrestrial Ecosystem Model (TEM) (Raich 
et al., 1991). 

Wscalar =
1 + LSWI

1 + LSWImax
(8)  

Tscalar =
(T ∘ − T ∘min)(T ∘ − T ∘max)

[(T ∘ − Tmin)(T ∘ − T ∘max)] − (T ∘ − T ∘opt)∧2
(9)  

where T◦ is the air temperature, and T◦
min, T◦

opt, and T◦
max, are the 

minimum, optimum, and maximum temperatures for photosynthesis, 
respectively. The biome-specific T◦

min, T◦
opt, and T◦

max values are 0 ◦C, 
27 ◦C, and 48 ◦C for grasslands, and − 1 ◦C, 30 ◦C, and 48 ◦C for crop-
lands ( Zhang et al., 2017). In this study, we used the same procedure 
reported in the previous publication (Xin et al., 2020) to estimate 
site-specific T◦

opt from the relationship between GPPEC or vegetation 
index (EVI) and daily daytime mean air temperature (T◦

DT) (see Results 
3.3 for more details). 

To determine the effects of satellite images data with different spatial 
resolutions on GPP estimates, we carried out two sets of VPM simula-
tions to estimate daily GPP by using site climate data and (1) time series 
EVI and LSWI data from Landsat and Sentinel-2 (GPPVPM-LS) and (2) time 
series EVI and LSWI data from MODIS (GPPVPM− MOD). 

2.6. Vegetation transpiration model (VTM) 

Evapotranspiration is the combined water flux of evaporation (E) 
from soil and canopy-intercepted water, and transpiration (T) from 
plants (Segovia-Cardozo et al., 2022). During the plant growing season, 
T represents the largest component of ET and is often larger than E 
(Ben-Asher et al., 2006; Paul-Limoges et al., 2022; Puig-Sirera et al., 
2021). At the leaf level, photosynthesis or carbon gain (GPP) and T are 
closely coupled, and water use efficiency at the leaf level is often 
calculated as their ratio (i.e., WUELeaf = GPP/T, mol CO2 / mol H2O). 
The VTM estimates daily T as a function of GPP and WUELeaf, and it was 
evaluated in grasslands (Alfieri et al., 2009). WUELeaf_C3 for C3 plants is 
500 µmol CO2 / µmol H2O and WUELeaf_C4 for C4 plants is 250 µmol CO2 
/ µmol H2O (Taiz et al., 2015). The equations below take into consid-
eration the presence of different vegetation types within a field, 
including the fraction of C3 vegetation (C3F) and C4 vegetation (C4F). 

T=(C3F ∗ 1
/

WUELeaf c3 + C4F ∗ 1
/

WUELeaf C4) ∗ GPP (11) 
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2.7. Statistical analysis 

We performed simple and multiple linear regression analyses be-
tween GPP and vegetation indices derived from MODIS, Landsat, and 
Sentinel-2 images. For the analyses between MODIS-based VIs and GPP, 
we used 8-day average GPP data to match their temporal resolutions. For 
the analyses between GPP and Landsat/Sentinel-2 images, we used 7- 
day GPP data (3 days before and 3 days after the Landsat/Sentinel-2 
image acquisition dates) as in a previous study (Wagle et al., 2020). 
The metrics to assess those relationships between GPP and 
satellite-derived VIs were R2 (the coefficient of determination), the 
Pearson correlation coefficient (r) to measure the fit of the data to the 
regression line, the mean absolute error (MAE), and the normalized root 
means squared error (nRMSE). 

3. Results 

3.1. Seasonal dynamics of climate, vegetation indices, and carbon fluxes 

Photosynthetically active radiation had strong seasonal dynamics, 
with peaks in the summer and troughs in the winter (Fig. 2). The 8-day 
average PAR values ranged from 11.5 mol/m2/day to 60.0 mol/m2/day. 
Air temperature (T◦

air) had strong seasonal dynamics during 
2016–2019, characterized by a April to October (July warmest month) 
and a cold season from November to March (December coldest month in 

average) (Figs. 2a, 3a, 4a). The 8-day average T◦
air ranged from − 5.2 ◦C 

in the winter to 30 ◦C in the summer. The seasonal distribution of 
rainfall is characterized by a wet spring, a dry summer, and a wet fall 
(Figs. 2a, 3a, 4a). April and May usually had the largest monthly rainfall. 
The annual rainfall was 631 mm (2016), 795 mm (2018), 1084 mm 
(2019), and 1109 mm (2017). 

At the tallgrass prairie site, the vegetation index data (Fig. 2b) 
showed strong seasonal dynamics. Grasses started to green up in April 
and became senescent after October. The GPPEC increased at the 
beginning of spring with a steep rise in April and reached maximum 
values in May (Fig. 2c). The GPPEC was high in the spring of 2016 and in 
the fall of 2017 and 2018, which was mainly driven by high rainfall. The 
EOS started at the beginning of November and GPP values decreased to 
≤1 g C/m2/day. VIs derived from both MSR and HSR data displayed 
consistent seasonality and magnitudes. The combined use of Landsat- 
Sentinel-2 enables us to generate consistent time series with a tempo-
ral resolution comparable with MODIS. For this site, LSWIHSR showed 
higher sensitivity to field disturbances events like grazing. 

At the alfalfa site, the large variations in vegetation indices and CO2 
fluxes (NEE and GPP) (Fig. 3) corresponded to the multiple hay harvest 
events in a year (e.g., five harvests in 2017). During the 2016–2019 
study period, 2017 was the wettest year (1109 mm), and GPPEC was 
higher in 2017 than in 2016 (Fig. 3c). The ETEC had a relatively smaller 
magnitude of change than CO2 fluxes. By late October, GPPEC declined 
substantially and fell below 1 g C/m2/day, indicating the EOS of vege-
tation. EVI derived from Landsat-Sentinel-2 displayed clear patterns and 
captured well harvest events like the ones reported in 2017. On the other 

Fig. 2. The seasonal dynamics and interannual variation of climate, vegetation indices, carbon and water fluxes from the prairie site. a.) Air temperature(T), 
photosynthetically active radiation (PAR), and precipitation. T and PAR are 8-day mean values, and precipitation is 8-day sum values. b.) Vegetation indices 
(enhanced vegetation index (EVI) and land surface water index (LSWI)) derived from MODIS at the 8-day interval and Landsat-Sentinel2. c.) NEEEC, GPPEC, and ETEC. 

IfC3F= 1.0,T(mmH2O / day)= 0.33
(
mmH2O / gC /m2/day

)
∗GPP

(
gC /m2/day

)
forC3plants (12)  

IfC4F= 1.0,T(mmH2O / day)= 0.165
(
mmH2O / gC /m2/day

)
∗GPP

(
gC /m2/day

)
forC4plants (13)   
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hand, LSWI derived from MODIS data has higher sensitivity than 
LSWIHSR for this field. Finally, VIs from both timeseries of optical data 
provided similar representation of the field seasonality. 

At the winter wheat site, seeds were sown in September/October 
(depending on the purpose of wheat – graze or grain-only) of the pre-
vious year, and crops were harvested in early June. Accordingly, the 

Fig. 3. The seasonal dynamics and interannual variation of climate, vegetation indices, carbon and water fluxes from the alfalfa site. a.) Air temperature(T), 
photosynthetically active radiation (PAR), and precipitation. T and PAR are 8-day mean values, and precipitation is 8-day sum values. b.) Vegetation indices 
(enhanced vegetation index (EVI) and land surface water index (LSWI)) derived from MODIS at the 8-day interval and Landsat-Sentinel2. c.)  NEEEC, GPPEC, 
and ETEC. 

Fig. 4. The seasonal dynamics and interannual variation of climate, vegetation indices, carbon and water fluxes from the winter wheat site. a.) Air temperature(T), 
photosynthetically active radiation (PAR), and precipitation. T and PAR are 8-day mean values, and precipitation is 8-day sum values. b.) Vegetation indices 
(enhanced vegetation index (EVI) and land surface water index (LSWI)) derived from MODIS at the 8-day interval and Landsat-Sentinel2. c.) NEEEC, GPPEC, and ETEC. 

J. Celis et al.                                                                                                                                                                                                                                     



Agricultural and Forest Meteorology 344 (2024) 109797

8

vegetation index data reflected the crop plant dynamics, including 
germination in the fall, rapid growth before becoming dormant in 
winter, and rapid growth in spring after temperatures rise (Fig. 4b). The 
GPPEC and NEEEC were larger in the spring of 2017 (due to more rainfall) 
than in the spring of 2018 and 2019 (Fig. 4c). The MSR and HSR 
vegetation indices captured well SOS and EOS for this winter crop. VIs 
derived using the HSR data followed more closely the GPPEC and NEE 
seasonal changes, and while both MSR and HSR EVI had similar mag-
nitudes, LSWIHSR exhibited constantly higher values than LSWIMSR. 

3.2. Relationships between GPPEC and vegetation indices derived from 
images at moderate (MODIS) and high (Landsat and Sentinel-2) spatial 
resolutions 

At the tallgrass prairie site (Fig. 5a), GPPEC had a stronger linear 
relationship with the EVI derived from the Landsat/Sentinel-2 images 
(R2 = 0.84) than from the MODIS images (R2 = 0.75). At the alfalfa site 
(Fig. 5b), the linear regression model indicated a stronger linear rela-
tionship between GPPEC and EVI from Landsat/Sentinel-2 images (0.80) 
than between GPPEC and EVI from MODIS images (0.73). Finally, the 
smallest site, the winter wheat site (Fig. 5c) had the weakest linear re-
lationships of all sites. The EVI from Landsat/Sentinel-2 was more 
strongly correlated with GPPEC (R2=0.73) than did the EVI from the 
MODIS (R2= 0.60). The comparison between GPPEC and EVI from 
Landsat/Sentinel-2 and MODIS images demonstrates the importance of 
using high spatial resolution of satellite images (Landsat/Senitnel-2), 
owing to mixed pixels for the MODIS. 

3.3. Relationships between air temperature, GPPEC, and EVI 

We investigated the relationships between EVI, GPPEC, and daily 
daytime mean air temperature for prairie (Fig. 6a,d), alfalfa (Fig. 6b,e), 
and winter wheat (Fig. 6c,f) to identify the site-specific optimal air 
temperature (T◦

opt-site) for the VPM simulations. At the native prairie 
site, GPPEC rose after air temperature reached 10 ◦C and reached a 
plateau at around 24 ◦C. Similarly, the EVI from Landsat/Sentinel-2 and 
MODIS images rose rapidly after air temperature went up to 10 ◦C and 
peaked at around 22 ◦C. At the alfalfa site, GPPEC increased rapidly after 

air temperature was above 10 ◦C and reached a plateau at around 18 ◦C. 
The EVI derived from MODIS and Landsat/Sentinel-2 increased as air 
temperature rose and peaked at around 22 ◦C. At the winter wheat site, 
GPPEC rose after the air temperature was above 2.5 ◦C and reached a 
plateau at around 19 ◦C. Similarly, the EVI from Landsat/Sentinel-2 and 
MODIS were positive when the air temperature was above 1 ◦C and 
reached a plateau at around 19 ◦C. 

Based on the canopy physiological analyses of GPPEC and daily 
daytime mean air temperature at these three sites, and the observed 
consistency between GPPEC-temperature and EVI-temperature re-
lationships, we set the T◦

opt value for the VPM simulations as 22 ◦C for 
the native prairie, 22 ◦C for alfalfa, and 19 ◦C for winter wheat. The 
consistency between the GPPEC-temperature and EVI-temperature re-
lationships at these sites opens the opportunity to use the EVI- 
temperature relationship to estimate T◦

opt in other sites without GPPEC 
data. 

3.4. A comparison of EC-derived GPP estimates (GPPEC) and VPM 
simulations (GPPVPM) using images at moderate (MODIS) and high 
(Landsat and Sentinel-2) spatial resolutions 

The seasonal dynamics of GPPVPM estimates were compared against 
the seasonal changes of GPPEC (Fig. 7). At the native prairie site, GPP 
values typically rose in March after the beginning of the vegetation 
greening and peaked in May with daily carbon uptake >14 g C/m2/day 
in 2016 and 10 g C/m2/day in 2018. The GPPVPM captured the seasonal 
dynamics of GPPEC well in terms of SOS and EOS. The GPPVPM− MOD09 
was overestimated in May-June (during peak growth) of 2018 and 2019. 
In contrast, the GPPVPM-LS2 tracked the seasonal variability of GPPEC 
better (Fig. 7a). 

For the alfalfa site, GPP typically rose after mid-February and reached 
over 14 g C/m2/day in May during 2016 and 2017, and 12 g C/m2/day in 
April during 2018. The year 2017, the wettest year, had the largest annual 
GPP values, with several periods with high GPP (>12 g C/m2/day) in 
early April, late June, and mid-August. The GPPVPM tracked the season-
ality (including peak values and abrupt changes due to hay harvests) of 
GPPEC well in all years. In addition, Fig. 8b showed that GPPVPM− MOD09 
was able to track the largest magnitude of GPPEC in 2016. 

Fig. 5. The relationships between eddy covariance-derived gross primary production (GPPEC) and enhanced vegetation index (EVI) derived from Landsat/Sentinel-2 
images at high spatial resolution (blue triangles) and MODIS images at moderate spatial resolution (red dots) at the tallgrass prairie, alfalfa, and winter wheat sites. 
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For the winter wheat site, GPP rose in January. The year 2017 (the 
wettest year) had the highest GPPEC values, with >13 g C/m2/day in 
March and peak GPPEC values of ~15 g C/m2/day in April. The sea-
sonality and these peak values were well captured by the GPPVPM-LS2. In 
2019, GPPEC peaked in March-April with GPP >10 g C/m2/day and 
again in July-August with similar values after significant pluvial events. 
The second peak (July-August) displayed abnormally high GPPEC values 
that don’t correspond well with the low NEE and ET magnitudes 
(Fig. 4c.) and the vegetation cover of the field given that it was fallow 
(no wheat, but some weeds, mainly C4 pigweeds (Amaranthus spp.) were 
present) period (Fig. S1). All the other seasonal dynamics of GPPEC 
corresponded well with the NEE magnitudes, and they were captured 
and represented well by the VPM predictions. The smaller magnitudes of 
NEE and ETEC, compared to larger magnitudes of GPPEC during the 
fallow period in the summer of 2019 indicate a flux partitioning error. 

The scatterplots of GPPEC and GPPVPM at HSR and MSR showed a 
strong linear relationship between GPPEC and GPPVPM for these C3 crops 
and C4 prairie (Fig. 8). The GPPVPM-LS2 predictions showed higher cor-
relations with GPPEC than did the GPPVPM− MOD09 predictions at the three 
sites. 

3.5. The relationship between EC-measured ET (ETEC) and transpiration 
estimates from VTM simulations (TVTM) 

We evaluated the seasonal dynamics of ETEC and TVTM at the three 
sites (Fig. 9). Peak ETEC values during the plant growing season were 
similar among the three sites, in the range of 4 to 5 mm/day. However, 
TVTM in the C4-dominated tallgrass prairie site was substantially lower 
than TVTM in the C3 alfalfa and winter wheat sites. For the three sites, the 
ETEC/P ratio and T/ETEC ratio were higher in the drier years (2016 and 
2018) compared to the wetter years (2017 and 2019) (Table 2). Fig. 9 
and Table 1 display the results of the TVTM estimates derived using 

GPPEC (TVTM-EC), GPPVPM-LS2 (TVTM-LS2), and GPPVPM− MOD09 
(TVTM− MOD09). In the tallgrass prairie site, the seasonal dynamics of TVTM 
agreed with the seasonal dynamics of ETEC. However, the magnitudes of 
TVTM were substantially smaller than ETEC during the plant growing 
season, ranging from 1 to 2 mm/day, accounting for only 45 % (TVTM-EC) 
of ETEC. The TVTM-LS2 and TVTM-EC displayed similar results with low 
variability (<3 %) among their annual totals, while the TVTM− MOD09 
estimates were 30 % higher than TVTM-EC. 

At the alfalfa site, the seasonal dynamics of TVTM corresponded well 
with the ETEC time series and tracked the reduction in T after hay harvest 
events. The TVTM was substantially lower than ETEC after hay harvests. 
Both ETEC and TVTM peak values ranged between 4 and 5 mm/day. 
During the growing season, TVTM-LS2 and TVTM-EC accounted for 67 % 
and 92 % of ETEC, respectively. The annual total estimates of TVTM-LS2 
were lower than TVTM-EC, while TVTM− MOD09 had closer annual total 
values to TVTM-EC. 

At the winter wheat site, TVTM tracked the seasonal dynamics of ETEC 
well from late 2016 to early 2019. We observed the highest ETEC:P ratio 
(86 %) in 2018. The lowest TVTM:ET EC ratios were observed in 2019, 
with 39 % (TVTM-LS2), 50 % (TVTM− MOD09), and 79 % (TVTM-EC). 

Table 2 shows the differences between total rainfall (P) and ETEC, 
total TVTM from GPPEC, TVTM-EC from GPPVPM-LS2, and TVTM-EC from 
GPPVPM− MOD09. Table 2 shows higher ET:P ratios during the drier year 
(2016 and 2018). 

4. Discussion 

4.1. Biophysical performance of vegetation indices from MSR (MODIS) 
and HSR (Landsat and Sentinel-2) at C3 annual crop sites and C4- 
dominant perennial prairie 

The combined use of Landsat and Sentinel-2 (HSR images) to 

Fig. 6. The relationships between air temperature and GPPEC (upper row a,b, and c) and EVI (lower row d,e, and f) at the tallgrass prairie, alfalfa, and winter wheat 
sites. Blue dots represent EVI from Landsat/Sentinel-2 at high spatial resolutions, and red dots are EVI from MODIS at moderate spatial resolution. 
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construct time series of VIs data helped to overcome the limitations of 
data frequency and enabled to effectively track the seasonal dynamics of 
vegetation canopy for the native prairie, alfalfa, and wheat sites. This 
underscores the necessity of integrating multiple HSR optical data 
sources for consistent and effective crop phenology monitoring. This 
aligns with findings from Griffiths et al. (2019), which highlights the 
need of 10-day Landsat-Sentinel2 composites for precise agricultural 
mapping in Germany, and Li & Roy (2017) that emphasizes the impor-
tance of combined Landsat-Sentinel data to generate cloud-free data for 
landcover change studies and continuous monitoring of ecosystems at a 
global scale. Additional studies such as (Liu et al., 2020; Zhang et al., 
2022) also underline the importance of this combined data approach to 
address HSR limitations, particularly in representing interannual crop 
intensity variations in regions like China and Southern Africa. Notably, 

while Landsat and Sentinel-2 images have a coarser temporal resolution 
(16-day revisit for Landsat and 5-day revisit for Sentinel-2A/B), cloud 
coverage conditions can introduce additional data gaps. Relying on a 
single satellite may not yield continuous observations sufficient to track 
the temporal changes in vegetation canopy. However, in this study 
merging Landsat and Sentinel-2A/B imagery increased the number of 
good-quality observations, ensuring more continuous data to track the 
land surface phenology at the three study locations. 

Time series images from the MODIS sensors (MSR images) with 1–2 
days of revisit time can track the seasonal dynamics and interannual 
variations of land surface phenology (Ganguly et al., 2010; Xiao et al., 
2005; Xiao et al., 2004, 2005; Zurita-Milla et al., 2009). However, our 
study sites were small and contained mixed pixels for the MODIS (~500 
m resolutions). As a result, we observed stronger relationships of the EVI 

Fig. 7. Seasonal dynamics of predicted and eddy covariance-derived gross primary production (GPPVPM and GPPEC) at the tallgrass prairie, alfalfa, and winter 
wheat sites. 

Fig. 8. Comparison between predicted and estimated GPP (GPPVPM and GPPEC) at the tallgrass prairie, alfalfa, and winter wheat sites.  

J. Celis et al.                                                                                                                                                                                                                                     



Agricultural and Forest Meteorology 344 (2024) 109797

11

from Landsat/Sentinel-2 images (EVI_HSR) than from the MODIS images 
(EVI_MSR) with GPPEC. The higher spatial resolution of EVI_HSR offered 
a more granular depiction of vegetation characteristics such as structure, 
health, and phenological stages, which aligned more closely with GPP 
data from the eddy flux tower sites. This finding is consistent with other 
research (Brown et al., 2007; Lin et al., 2019; Wagle et al., 2020), 
underscoring the advantages of using high-spatial-resolution EVI prod-
ucts to establish stronger relationships with CO2 fluxes. This is primarily 
attributed to the improved congruence between the tower footprint and 
the pixels in high-spatial-resolution remote sensing images. The results 
show that the EVI and LSWI were effective in tracking the land surface 
phenology (SOS and EOS) of prairie, alfalfa, and winter wheat. The LSWI 
was able to delineate the harvest dates and detect field disturbances (i.e., 
tillage) with a lower sensitivity to these events when derived using the 
MSR indexes. Our results show that the temporal consistency of the land 
surface phenology metrics derived from the VI-based and GPPEC-based 
approaches correspond well with the field management and seasonal 
dynamics of vegetation. The VI-based approach showed higher sensi-
tivity to small field disturbances, while both approaches effectively 
captured the management practices, SOS, and EOS well for the three 
sites. The EVI_HSR displayed higher accuracy and sensitivity to the 
changes in canopy structure and crop development than the EVI_MSR at 
the three sites. The highest difference between the two observations was 
observed for the winter wheat, where optical data had challenges rep-
resenting the magnitude of plant biomass increase due to flowering and 
development of wheat grain heads. Moreover, additional uncertainty 
can be attributed to the proximity to other winter wheat fields that had 
different management practices. The MODIS pixels of 500 m (MSR) are 
often mixed in croplands, while Landsat and Sentinel-2 images represent 
pure pixels. This difference can contribute to larger differences in the 
relationships of GPPEC with EVI_MSR and EVI_HSR in smaller winter 
wheat fields (Meng et al., 2013; Ozdogan and Woodcock, 2006; War-
dlow et al., 2007). 

Our findings indicate that in addition to GPP, vegetation greenness 
(e.g., EVI) provides a reasonable option to determine the site-specific 
optimal temperature in tallgrass prairie, alfalfa pasture, and winter 

Fig. 9. Seasonal dynamics of 8-day daily average predicted (ETT-VTM), 8-day EVIMSR, and eddy covariance measured evapotranspiration (ETEC) at the tallgrass 
prairie, alfalfa, and winter wheat sites. 

Table 1 
A comparison of annual precipitation, evapotranspiration (ETEC) from the tower 
observation, and transpiration (TVTM) from Vegetation Transpiration Model 
simulations at the tallgrass prairie, alfalfa pasture, and winter wheat sites. Daily 
ETEC (mm day− 1) and TVTM (mm day− 1) from the study sites were aggregated 
over those days with ET observations.   

Year Annual totals (mm) 

P ETEC TVTM-EC TVTM-LS2 TVTM− MOD09 

Prairie 2016 517 488 272 153 317 
2017 527 340 141 143 257 
2018 476 442 170 166 328 

Alfalfa 2016 542 582 458 330 477 
2017 1108 721 660 437 611 
2018 147 166 178 137 158 

Wheat 2017 1109 619 568 401 421 
2018 556 476 442 284 370 
2019 1084 755 599 298 376  

Table 2 
A comparison of the ratio of annual evapotranspiration (ETEC) from tower 
observation to annual precipitation (P), and the ratio of different transpiration 
(TVTM) estimates from Vegetation Transpiration Model to ETEC at the tallgrass 
prairie, alfalfa pasture, and winter wheat sites. Daily ETEC (mm day− 1) and TVTM 
(mm day− 1) from the study sites were aggregated over those days with ET ob-
servations for the study period within each year.   

Year Study period water return rates (%) 

ETEC:P TVTM-EC:ETEC TVTM-LS2:ETEC TVTM− MOD09:ETEC 

Prairie 2016 94 56 31 65 
2017 65 41 42 76 
2018 93 38 38 74 

Alfalfa 2016 107 79 57 82 
2017 65 92 61 85 
2018 113 107 83 95 

Wheat 2017 56 92 65 68 
2018 86 93 60 78 
2019 70 79 39 50  
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wheat sites where ground-based GPPEC data are not available. Finally, 
the results demonstrate the impact of using MSR and HSR-derived 
vegetation indices at the field level, which are important for esti-
mating crop performance and vegetation health insurance indices over 
farms with multiple crops, rotations, and management practices 
(Bokusheva et al., 2016; Kogan et al., 2012; Wagle et al., 2020). 

4.2. Comparison of GPP estimates from Landsat/ Sentinel-2 data (HSR) 
and Modis (MSR) data 

The GPP estimates from the VPM simulations using local climate data 
agreed reasonably well with the GPPEC data. However, GPPVPM-LS2 es-
timates were closer to GPPEC than GPPVPM− MOD. This can be attributed 
largely to two factors: (1) a MODIS pixel often includes multiple crop 
fields that have different management practices and cultivation calen-
dars, and (2) the footprints of short (i.e., 2–3 m) eddy flux towers in crop 
fields are much smaller than the size of a MODIS pixel (500 m). Similar 
limitations of using MODIS images have been reported in previous 
studies (Balzarolo et al., 2019; Gitelson et al., 2008; Zhu et al., 2020). In 
comparison, vegetation indices from Landsat and Sentinel-2 images, 
which are used to calculate fPARchl and Wscalar, often reflect the vege-
tation canopy dynamics from one crop field within the footprint of the 
eddy flux tower (Skakun et al., 2017; Wolanin et al., 2019). The results 
from this study highlight the potential of VPM for estimating GPP in C3 
vegetation and C4-dominated fields using Landsat and Sentinel-2 im-
ages. The GPP simulation results showed that GPPVPM− MOD estimates 
had the strongest linear relationship with GPPEC in the alfalfa field, 
which was the largest field of the three studied sites (the MODIS pixel 
was mostly within the alfalfa field). The weakest linear relationship 
between GPPVPM_MOD and GPPEC estimates was observed in the winter 
wheat site, which was the smallest field. The wheat field was small (28 
ha) and the MODIS pixel included neighboring wheat fields with 
different management practices. 

The sources of errors and uncertainties of GPP estimates from the 
LUE-based models include model structure, model parameters, and 
input datasets including satellite images and climate data. The com-
parison of VPM simulations between MSR and HSR images illustrates the 
error source and uncertainty associated with land cover types within one 
image pixel and the spatial mismatch (inconsistency) between the image 
pixel and the footprints of eddy flux towers (Ran et al., 2016; Zheng 
et al., 2018). One of the limitations of MSR satellite data is that one MSR 
pixel often contains multiple land cover types, often called a mixed 
pixel, while one HSR pixel most likely contains one land cover type, 
often called a pure pixel (Brown et al., 2007; He et al., 2017; Yu et al., 
2018). The presence of different landcover types within a single pixel 
affects the model’s representation of the fraction of PAR absorbed by the 
chlorophyll and the vegetation water response, which are strong drivers 
of vegetation carbon uptake. Moreover, the quality of the data from 
satellite optical sensors decreases with cloud conditions and the cloud 
coverage limitations have a large impact on HSR data, reducing the 
continuity in time series data. In addition, the EC-flux tower estimates 
will be influenced by the surrounding fields as tower footprint changes 
with the season, weather conditions, vegetation height, and vegetation 
cover (Celis et al., 2021; Kljun et al., 2015; Ran et al., 2016). The source 
of uncertainty in EC measurements and flux partitioning (NEE into GPP 
and ER) errors also increases the challenges to validate GPP estimates. 

4.3. Capacity of VTM in estimating daily t in C3 wheat and alfalfa, and 
C4-dominated native prairie 

The daily T estimates from the VTM closely followed the seasonal 
dynamics of ETEC, showing that TVTM could be used as an indicator of 
water use and water stress, given the importance and advantages of 
quantifying T in different land use types (Angus and Van Herwaarden, 
2001; Bremer et al., 2001; Condon et al., 2002; Miao et al., 2016). 

The prairie site had an average of 84 % of precipitation (P) returned 

to the atmosphere through ETEC during the study period with higher 
values in periods of dry years (<90 % in 2016) and lower rates in periods 
of wet years (~60 % in 2017), being consistent with the ET rates re-
ported in other studies (Burba and Verma, 2005) for this ecosystem in 
Oklahoma. Annual T:ET rates determined using VTM were similar to 
values reported in other C4-dominated native prairie (O’Keefe et al., 
2020), having a consistent values range using TVTM-EC (45 %) and 
TVTM-LS2 (37 %) estimates for our study period. Nonetheless, 
TVTM− MOD09 (71 %) had the largest T rate, and this higher rate difference 
can be partially explained given the spatial resolution (500 m) of this 
product and the presence of other pastures and small sections of trees 
within the pixel (Fig. 1). The different management regimes of pastures 
and C3:C4 vegetation composition directly impact E losses as well as T 
rates in prairie systems (Bajgain et al., 2018; Logan and Brunsell, 2015; 
Wagle et al., 2017). 

Substantially smaller T estimates by VTM for this C4-dominated 
tallgrass prairie site than C3 alfalfa and winter wheat sites in this 
study can be attributed to the use of higher WUE (C4 parameterization) 
value for tallgrass prairie. However, GPP and ET magnitudes were 
similar in these three ecosystems (Bajgain et al., 2018; Wagle et al., 
2019a,b). Furthermore, Bajgain et al. (2018) reported higher WUE in 
winter wheat than in tallgrass prairie. Studies use the same WUE pa-
rameters for all C4 species for modeling purposes, regardless of differ-
ences in species types (e.g., grasses vs. crops), management practices (e. 
g., rainfed vs. irrigated), and productivity. For example, the maximum 
GPP can be 28–30 g C/m2/day in irrigated maize (Zea mays L.) in 
Nebraska (Suyker and Verma, 2010), which is 2–3 times bigger than 
those observed in tallgrass prairie. Using the same C4 WUE parameter, 
VTM would estimate 2–3 times bigger T for the irrigated maize than 
tallgrass prairie as T is simply estimated by the ratio of GPP to WUE in 
VTM. The results of this study underline some potentials as well as 
limitations of this VTM approach given some of the challenges to ac-
count for the discrepancies between GPP and WUE estimates. Thus, 
additional parameterization may be needed to improve its performance 
in accurately predicting field-level T patterns across different species 
types, management practices, and productivity levels. In the alfalfa field, 
a comparison of cumulative P and cumulative ETEC during the study 
period revealed that the field’s ETEC totals were higher than P totals in 
drier years (2016 and 2018). Alfalfa’s deep root systems can withdraw 
water from deeper depths during dry conditions. Pluvial events during 
March-April 2016 just before the study was initiated also contributed to 
a higher initial soil moisture condition and subsequent higher ET flux 
rates in this site (Wagle et al., 2020). T estimates by VTM were consistent 
with the expected higher T rate for alfalfa, which has rapid increase and 
growth after events like grazing or harvesting (Irmak et al., 2003; Shi 
et al., 2017; Wagle et al., 2020). However, for the 2016–2017 study 
period, the 10 m transpiration estimates (TVTM-LS2) had the lowest rate 
(60 %) of the annual ETEC flux, while TVTM− MOD09 (500 m) constituted 
82 %, being closer to the TVTM-EC (EC fetch footprint - ~100 m) estimates 
that accounted for 85.5 % of ETEC. The VTM results indicate that for a 
larger field like the alfalfa site (48 ha), one single HSR pixel does not 
provide a significant representation of the water flux variability across 
the entire field, which might present different biogeochemical and soil 
moisture dynamics as discussed in multiple studies (Joshi et al., 2011; 
Logan and Brunsell, 2015). Furthermore, our TVTM-EC and TVTM− MOD09 
results demonstrate the strength and potential of VTM given consistency 
in magnitude with the T:ET values reported for this alfalfa field during 
the 2016–2017 growing season (81 %) (Wagle et al., 2020) using the 
Flux Variance Similarity ET partitioning method. 

For the winter wheat site, annual ETEC accounted for 55 %, 85 %, and 
69 % of the total P in 2017, 2018, and 2019, respectively. The TVTM-EC 
estimates represented the highest T:ET ratios of 91 %, 92 %, and 79 %, 
respectively, of the annual ETEC. The data anomaly in GPPEC estimates 
for the second part (i.e., fallow period) of the 2019 year (Fig. 4c and 
Fig. S1) introduced direct bias into the VTMEC estimates. For simplicity, 
we used the C3 WUE value to estimate T for the entire study period for 
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winter wheat, but the fallow period had a small presence of C4 pigweeds 
with abnormally high GPPEC values, resulting in higher T values than 
ET. Since VTM estimates T solely based on GPP and WUE estimates, 
these WUE and GPP estimates need to be accurate to successfully cap-
ture the water flux dynamics using the VTM model. Some of the un-
certainty in TVTM-EC for other periods can be partially attributed to the 
variability of the fetch footprint (Kljun et al., 2015; Ran et al., 2016), 
which can have stronger variations depending on the location of the EC 
system and the landcover changes of the neighboring fields. The 
TVTM− MOD09 estimates (68 %,78 %, and 50 % of ETEC) were higher than 
the TVTM-LS2 estimates (65 %,60 %, and 39 % of ETEC) for 2017, 2018, 
and 2019. Larger TVTM− MOD09 estimates typically are linked with the 
heterogeneity of MODIS pixel size as this has been shown to contribute 
to overestimations of carbon and water fluxes in crops like winter wheat 
(Yang et al., 2014). Nevertheless, both MSR and HSR VTM estimates 
kept a transpiration flux magnitude consistent with the values found in 
other studies (Bajgain et al., 2018; Wu et al., 2011), representative of a 
more efficient water use capacity in winter wheat crops. These results 
demonstrate the benefits of using a model like VTM, which is fed with 
satellite products at different spatial resolutions, to represent T. This is 
because VTM is sensitive to field management events and field condi-
tions, which can impact T rates (Morison and Gifford, 1984; Vadez et al., 
2014). 

5. Conclusions 

In this study, we investigated the potential of HSR Landsat and 
Sentinel-2 images, along with MSR MODIS images, to track the 
phenology and GPP of C3 winter wheat and alfalfa, and a C4-dominated 
native prairie in Oklahoma, USA. The analysis between GPPEC, EVI, and 
air temperature provided new insights into the biophysical performance 
of vegetation indices and a reasonable method for determining the op-
timum air temperature at individual sites. This could lead to a better 
understanding of the effects of air temperature on photosynthesis. The 
results show that the VPM performed well in estimating the seasonal 
dynamics of GPP at the three sites and HSR GPPVPM-LS2 agreed more 
strongly with GPPEC than did MSR GPPVPM− MOD. The analyses of GPPEC 
from the EC flux tower sites and GPPVPM with in-situ climate data and 
remote sensing data (HSR and MSR) show the capacity of the VPM to 
estimate and predict GPP of C3 and C4 ecosystems in Oklahoma using 
remote sensing observations at moderate and high spatial resolutions. 

The results show that the VTM effectively tracked the seasonal dy-
namics of ET in prairie, alfalfa, and winter wheat. However, additional 
parameterization may be needed for this simple VTM approach to 
accurately estimate field-level T patterns across different species types, 
management practices, and productivity levels. The use of GPPVPM es-
timates to calculate TVTM offers a simpler way to represent the water use 
in C3 crops and C4-dominated prairie. The information provided in our 
study demonstrates the necessity and potential of using Landsat and 
Sentinel-2 images for the study of phenology and estimates of GPP and T 
in tallgrass prairie, alfalfa, and winter wheat. Further assessment of VPM 
and VTM at other C3 agroecosystems and C4-dominated native prairie 
fields with EC flux tower sites is still needed, including those with irri-
gation practices. This would help us to better understand the potential 
sources of uncertainty in the simulations and representation of the 
carbon and water fluxes. 
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