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Cooling island effect in urban parks from the
perspective of internal park landscape
Xiaoyu Cai1, Jun Yang 1,2✉, Yuqing Zhang 3✉, Xiangming Xiao4 & Jianhong (Cecilia) Xia5

Urban parks can effectively reduce surface temperatures, which is an important strategic

approach to reducing the urban heat island effect. Quantifying the cooling effect of urban

parks and identifying their main internal influencing factors is important for improving the

urban thermal environment, achieving maximum cooling benefits, and improving urban

sustainability. In this study, we extracted data frobut this is often unrealisticm 28 urban parks

in Zhengzhou, China. We combined multivariate data, such as Landsat 8 data, to retrieve the

land surface temperature (LST), extract the park interior landscape, and quantify the cooling

effect using three cooling indices: park cooling distance (LΔmax), temperature difference

magnitude (ΔTmax), and temperature gradient (Gtemp). Furthermore, the relationship between

the internal landscape characteristics of the park and the average LST and cooling indices of

the park was analyzed. The results showed that different buffer ranges affect the LST-

distance fitting results of urban parks, and a 300-m buffer zone is the optimal fitting interval.

However, specific parks should be analyzed to select the optimal buffer range and reduce the

cooling index calculation errors. Additionally, the mean values of LST, ΔTmax, LΔmax, and Gtemp

for the 28 parks in Zhengzhou were 34.11, 3.22 °C, 194.02 m, and 1.78 °C/hm, respectively.

Park perimeter (PP), park area, internal green area (GA), and landscape shape index (LSI)

were both significantly correlated with ΔTmax and the main factors associated with main-

taining a low LST in parks. LΔmax was mainly affected by the GA, LSI, and perimeter-area

ratio, whereas Gtemp was positively correlated with PP. Finally, the threshold value of effi-

ciency for parks in Zhengzhou was 0.83 ha, and comprehensive parks showed optimal

cooling in every aspect.
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Introduction

Increasing urbanization and unstable global climate change
have exacerbated the urban heat island (UHI) effect, with
urban areas tending to be warmer than the surrounding

suburbs (Lin et al., 2015; Lai et al., 2018; Xin et al., 2022; Yuan
et al., 2022). The UHI effect can further lead to many adverse
effects such as air pollution, additional energy consumption, and
urban heat waves (Lowe 2016; Leal Filho et al., 2018; Mika et al.,
2018; Zhou et al., 2017; Yang et al., 2020; Wang, 2022). This
phenomenon can also directly or indirectly affect the health of
urban inhabitants and the sustainable development of cities (He,
2018; Yao et al., 2022b; Wang et al., 2022d). To tackle this
challenge, a significant amount of research and experimentation
has been performed, and solutions, such as rational planning of
blue-green areas, the use of innovative mitigation materials, and
the adoption of green roofs and cool pavements, have been
proposed (Yang et al., 2017; Gunawardena et al., 2017; Santa-
mouris and Yun, 2020; Wang et al., 2022c, 2021). Among these
many mitigation measures, urban blue-green space has proven to
be a potential solution because of its inherent environmental,
ecological, and social benefits (Yan et al., 2021; Sanusi and Jalil,
2021). Urban parks, an important component of urban blue-
green space, not only provide values such as recreation, humi-
dification, and air purification but also create park cooling effects
(PCEs) in cities, where urban parks are cooler than the sur-
rounding urbanized areas (Gao et al., 2022; Yang et al., 2022; Xie
and Li, 2020; Wang et al., 2022b).

To study PCEs, field measurements, remote sensing, and GIS
analysis are commonly used (Yu et al., 2020a; Fu et al., 2022;
Şimşek et al., 2022). Field measurements primarily use small
sensors to monitor meteorology in and around the urban parks at
specific times or for long periods to study the spatiotemporal
characteristics of the environmental thermal fields in and around
the urban parks and their influencing factors (Yang et al., 2016;
Yan et al., 2018). Traditional field measurement methods are
time-consuming and labor-intensive and hardly reflect the overall
situation of park cooling islands (PCIs). Compared with on-site
measurement, remote sensing data can provide detailed land use/
land cover information owing to its low cost and time advantages
(Zhou et al., 2019; Wang et al., 2022b). Remote sensing combined
with GIS analysis has become the mainstream method for PCEs.
Researchers have used Landsat TM, QuickBird, IKONOS, and
ASTER satellites to acquire surface temperature inversion data
(Cao et al., 2010; Zhu et al., 2021; Aram et al., 2019). Based on
surface temperature data, researchers have used different metrics
successively to calculate the urban PCI. Park cooling intensity and
distance are the two most commonly measured indicators that
represent the temperature difference of the park, a certain range
of environment, and the maximum distance the park cooling
intensity can be achieved (Liao et al., 2021; Shah et al., 2021a; Gao
et al., 2022). Subsequently, the park cooling gradient and area
based on the deformation of the two emerged (Peng et al., 2021;
Du et al., 2022; Yao et al., 2022a). Yu et al. (2017, 2021) intro-
duced a threshold value of efficiency (TVoE) from the “Law of
Diminishing Marginal Utility” in economics to represent the
threshold at which a green space or park can achieve the cooling
effect.

According to relevant studies, the land surface temperature
(LST) of urban parks can differ from that of their surroundings in
summer by 1–2 or 4–8 °C (Zhu et al., 2021; Algretawee, 2022).
Furthermore, park size, scale, shape, and complexity affect the
PCI effect and vary widely across climate zones (Geng et al., 2022;
Zhou et al., 2022; Wang et al., 2022a). Researchers have con-
ducted a large number of studies in quantifying the PCEs, iden-
tifying the main influencing factors, determining the optimal
areas for the cooling effect, and rationalizing the planning and

design of urban parks (Yu et al., 2017, 2020b, 2021; Zhu et al.,
2021; Yao et al., 2022a; Du et al., 2022).
In actual planning and construction, urban parks are often

built independently of their surroundings. Therefore, how to plan
the interior of urban parks to alleviate UHIs is particularly cri-
tical. Few studies have calculated the PCE by excluding sur-
rounding disturbances and exploring the correlation between the
internal park landscape and PCE.

This study is based on Google Earth’s historical high-resolution
imagery and Landsat 8 satellite image data for 28 parks within
Zhengzhou city. Our objectives are (1) to quantify the effect of
cold islands in these 28 parks using three cooling indices: ΔTmax,
LΔmax, and Gtemp; (2) to identify the main internal park influences
that affect park LST and cooling indices; and (3) to calculate the
TVoE of urban parks in Zhengzhou and propose optimization
recommendations based on the internal park perspective. Our
study provides a new perspective on PCEs from the internal park
landscape and offers insights into the planning and construction
of future urban parks to mitigate the UHI effect.

Data and methods
Study area. Zhengzhou is located at 112°42’–114°14’ E,
34°16’–34°58’ N. It has a temperate continental monsoon climate
with long, dry, and cold winters and relatively hot summers. It
has typical thermal environmental problems and faces serious
heat island problems in summer (Zhao et al., 2018; Li et al.,
2019, 2020). The hottest month in Zhengzhou is July, with an
average maximum temperature of 33.8 °C. Zhengzhou gave vital
attention to the construction of urban parks and proposed a
construction plan of “300 m to see the green, 500 m to see the
garden”. There are 986 parks in Zhengzhou, with the built-up
green space rate reaching 35.84% and a parkland area per capita
of 13 m².

Data collection and processing
Selection of parks. In this study, 28 urban parks with an average
area of 14.75 ha (1.25–50.22 ha) in Zhengzhou City were selected
(Fig. 1). The principles of park selection were as follows: (1) each
park area was larger than 1 ha, and the areas were not equal; (2)
the parks were located at a certain distance from each other, and
their buffer zones did not overlap; and (3) the parks were located
in the urban core area. The source of the park boundary data was
Baidu Map (https://map.baidu.com/), and the park boundaries
were further rectified by combining Google Earth’s historical
high-resolution image data. Following the Zhengzhou Urban
Green Space System Plan (2013–2030), the sample parks were
classified into community parks (area > 0.5 ha, n= 8), theme
parks (area > 5 ha, n= 10), and comprehensive parks (area > 10
ha, n= 10).

LST retrieval. A Landsat 8 image was collected on July 7, 2019, at
11:01 a.m. GMT. It was downloaded from the Geospatial Data
Cloud Website (https://www.gscloud.cn/). Then, we adopted the
mono-window algorithm (Qin et al., 2001) to retrieve the LST.
The equations are as follows:

Ts ¼ α 1� C2 � D2

� �þ β 1� C2 � D2

� �þ C2 þ D2

� �
T10 � D2Ta

� �
= C2 � 237:15
� �

ð1Þ

C ¼ εω ð2Þ

D ¼ 1� ωð Þ 1þ 1� εð Þω½ � ð3Þ
where Ts, T10, and Ta represent the LST, brightness temperature
on the sensor, and mean atmospheric temperature, respectively,
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all units are in K; α and β are reference coefficients (when LST
ranges from 0–70 °C, α=−67.355351, β= 0.458606); C2 and D2

are intermediate variables derived from surface emissivity; ε and
ω represent the surface emissivity and atmospheric transmittance
of T10, respectively. Finally, we converted the LST units from K
to °C.

Buffer creation and calculation of PCI metrics. Combining pre-
vious studies and considering the resolution of Landsat 8 images,
a buffer zone analysis of 600 m was generated for the parks by
selecting 30 m as the interval (Peng et al., 2021). Relevant studies
have shown that green spaces and water bodies around parks
enhance their cooling effect (Cheng et al., 2015; Wu et al., 2021a).
Thus, the disturbance areas around each park were identified, and
the buffer polygons of each park were obtained by eliminating the
influencing areas containing larger green belts and water bodies
within the buffer zones.

First, the average LST was calculated for each park and buffer
ring. Then, LST versus distance curves were plotted. Finally,
different park cooling curves were fitted with 300-m and 600-m
buffer zone widths using a polynomial fit to derive the most
accurate fitting relationship.

In this study, PCE intensity was described by three metrics:
park cooling distance (LΔmax), temperature difference magnitude
(ΔTmax), and temperature gradient (Gtemp) (Qiu and Jia, 2020;
Chen et al., 2022). As shown in Fig. 2, the PCI was determined by
the first peak of the inflection point of the LST fitted curve. The
first inflection point peak was chosen where the slope of the LST
fitting curve changed sharply or reached a relatively stable level
(Wu et al., 2021b). ΔTmax (°C) was the difference in the vertical
coordinate values between the first turning point and average
park temperature. LΔmax (m) was the difference of the horizontal
coordinate values between the two points. Gtemp (°C/hm) was the

average temperature difference per unit ΔTmax.

ΔTmax ¼ TF � Tp ð4Þ
where TF is the temperature at the peak at the first turning point
of the cubic polynomial fit curve, and TP is the average surface
temperature inside the park.

Selection of main influencing factors. In this study, the 28 sample
parks were well constructed and in good vegetation growth
condition. We extracted the green areas, impervious surfaces, and
water areas within the parks (Fig. 3) by visually interpreting the
Google historical imagery and calibrating them with Tianditu
vector map (https://www.tianditu.gov.cn). The kappa coefficient
was 0.87, which fulfills the need of the study. The calculation of
the landscape pattern was completed by VecLI software (Yao
et al., 2022c).

We selected 13 indicators (Table 1) from four aspects: park
geometry, landscape composition, landscape configuration, and
remote sensing index. the effects of these indicators on park LST,
ΔTmax, LΔmax, and Gtemp were analyzed.

Calculation of TVoE. The TVoE calculation method proposed by
Yu et al. (2017) was used, based on a logarithmic fit curve of
ΔTmax versus park area. The TVoE is reached when the slope of
the curve is 1. Before reaching the TVoE, the PCE increases
significantly as the park area increases, whereas it does not
increase significantly past the threshold. The TVoE was calculated
in Origin 2022.

Statistical analysis. The relationship between park average LST
and PCI metrics and the main influencing factors was evaluated
using Pearson correlation analysis. The work was done on SPSS
26.0 software. We adopted a logarithmic function to describe the

Fig. 1 Location of the study area. a and b study area location within China and within Henan, respectively. c Location of study parks in Zhengzhou City.
Park codes are sorted by area size.
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Fig. 2 Schematic diagram of park buffer zone and park cooling curve.

Fig. 3 Internal park landscape features. a High-resolution image of the park. b Land use inside the park. Take Park 26 for example.

Table 1 Influencing factors of cooling effect inside the park.

Classification Abbreviation Descriptions

Geometric
morphological features

PA (ha) The area of a park
PP (m) The perimeter of a park
PPAR (m/ha) Perimeter-Area ratio of a park

Landscape composition
in the park

PI (%) The proportion of the imperious surface in a park
GA (ha) The green area within a park
WA (ha) The water-body area within a park
PD The number of specific types of patches per unit area is a measure of fragmentation. PD≥ 0
ED (m/ha) The ratio of the total length of the plot edge to the total landscape area reflects overall shape complexity.

ED > 0
LSI The landscape shape index of an urban park

Landscape configuration
in the park

SHDI SHDI ¼ ∑m
i¼1 Pi ´ lnPi

� �
Where Pi is the proportion of landscape area occupied by type i (Green, Water,

Imperious surface). A higher SHDI value represents a more complex spatial diversity of urban parks.
SHDI≥ 1

SHEI SHEI ¼ �∑m
i¼1 Pi ´ ln Pið Þ

lnm An indicator of patch diversity as determined by the proportion of different land use
types distributed across the landscape. 0≤ SHEI≤ 1

Remote Sensing Index NDVI NDVI= (NIR – Red)/(NIR+ Red)
MNDWI MNDWI= (MIR – NIR)/(MIR+ NIR)

Where NIR, Red, MIR are the reflectance values of the near-infrared band, of the red band, and of a mid-
infrared band of Landsat 8, respectively
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relationship between park area and LST and between park area
and ΔTmax (Yao et al., 2022a; Wang et al., 2022b).

Results
Results of land surface temperature inversion. The results of the
LST inversion were classified into seven classes using the standard
deviation classification method (Table 2). The LST of Zhengzhou
City (Fig. 4) ranged from 20.98–52.95 °C, with an average of
35.85 °C. From a spatial perspective, the low-temperature zone
(<34.42 °C) in Zhengzhou was located in blue-green spaces such
as rivers, lakes, reservoirs, southern woodlands, and urban parks.
The middle-temperature zone was widespread in the city. The
medium-high temperature zone was located in the midwestern
area of the city, as well as in the southeast. Sub-high and high-
temperature zones were located in densely populated residential
and commercial areas, as well as areas such as railway stations,
airports, and factories.

LST, ΔTmax, LΔmax, and Gtemp. The results and average values of
LST and PCI three cooling indices, ΔTmax, LΔmax, and Gtemp, for

the 28 urban parks are presented in Fig. 5. The average LST for
these parks ranged from 31.84 to 36.12 °C. The average value was
34.11 °C. The average LST of 26 of these parks was below that of
Zhengzhou City, and only the average LSTs of parks 4 and 5 were
higher than that of Zhengzhou City, but they still had ΔTmax

values of 0.73 and 2.04. This indicates that the average LSTs of the
28 selected urban parks were below than that of the surrounding
urban built-up areas, forming a PCI. The range of ΔTmax was
between 0.73 and 5.98 °C. The range of LΔmax was between 51.89
and 415.02 m. The range of Gtemp was between 0.73 and 4.07 °C/
hm. The average values of ΔTmax, LΔmax, and Gtemp are 3.22 °C,
194.02 m, and 1.78 °C/hm.

In order to explore the differences in LST, ΔTmax, LΔmax, and
Gtemp between different types of parks, we classified the parks into
three types according to their social attributes and found
significant differences between them (Fig. 6). The mean LST was
lower in comprehensive parks, followed by that in theme parks
and community parks, with mean values of 34.88, 34.00, and
33.62 °C, respectively. The mean ΔTmax was higher in compre-
hensive parks (2.38 °C), followed by that in theme parks (3.26 °C)
and finally that in community parks (3.85 °C). LΔmax and Gtemp

followed the same trend as ΔTmax, with LΔmax mean values of
155.89 m, 190.14m, 228.40m for comprehensive, theme, and
community parks, respectively, and Gtemp mean values of 1.48 °C/
hm, 1.89 °C/hm, 1.90 °C/hm, respectively. Overall, comprehensive
parks had the lowest LST and the largest cooling index.

Correlation of influencing factors with the thermal environ-
ment inside the park. We conducted a Pearson correlation
analysis between a total of 13 indices and the mean LST of the
park from four perspectives: park geometry, internal landscape
composition, landscape configuration, and remote sensing indices
(Table 3).

Table 2 Classification of LST in Zhengzhou.

Temperature class Temperature range (°C)

Low temperature <28.7
Sub-low temperature 28.7–31.6
Medium-low temperature 31.6–34.4
Middle temperature 34.4–37.3
Medium-high temperature 37.3–40.1
Sub-high temperature 40.1–43.0
High temperature >43.0

Fig. 4 Spatial distribution of LST in Zhengzhou City (LST/°C).
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In terms of park geometric morphology, the correlation
coefficients of park mean LST with park perimeter (PP) and
park area (PA) were −0.577 and −0.546; while the correlation
coefficient with the perimeter-area ratio (PPAR) was 0.641. This
indicates that a larger park area and perimeter can result in a
lower LST. As the shape of the park becomes more complex, the
PPAR becomes larger, and the LST of the park increases. In terms
of landscape composition within the park, the mean LST of the
park was negatively correlated with both green areas (GA) and
water-body areas (WA). This indicates that more green space and
water-body areas in the park lower the LST of the park.
Furthermore, in the park landscape configuration, the mean LST

of the park is negatively correlated with the Shannon Diversity
Index (SHDI) at the 0.05 level, and positively correlated with the
landscape shape index (LSI) at the 0.01 level. This indicates that
in the park, the more complex the spatial diversity of the park, the
higher the average LST, and the more complex the landscape,
the lower the average LST. In terms of remote sensing indices, the
normalized difference vegetation index (NDVI), modified
normalized difference water index (MNDWI), and park LST
did not show a significant correlation.

In addition, the statistical regression analysis of park area and
mean LST of the park is shown in Fig. 7. The results showed a
negative logarithmic relationship between park area and mean

Fig. 5 Average LST and cooling indices of the 28 urban parks.

Fig. 6 Boxplots of three different types of parks. a LST, b ΔTmax, c LΔmax, d Gtemp.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-023-02209-5

6 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |          (2023) 10:674 | https://doi.org/10.1057/s41599-023-02209-5



LST (R²= 0.3752, p < 0.01). This demonstrates the potential
impact of the park area on cooling.

Correlation between influencing factors and PCI. Figure 8
shows the correlation results of LΔmax, ΔTmax, and Gtemp and their
influencing factors. In terms of park geometry, the PCI was sig-
nificantly influenced by the PA and PP. In this study, PA and PP
were positively correlated with ΔTmax and Gtemp, and PPAR was
negatively correlated with ΔTmax and LΔmax. Among them, LΔmax

was significantly by PPAR (p < 0.05), ΔTmax was significantly by
PA, PP, and PPAR (p < 0.01), and Gtemp was significantly by PP
(p < 0.05). In the landscape configuration of the park, GA was
significant at the p < 0.05 and p < 0.01 levels with LΔmax (0.405)
and ΔTmax (0.626), respectively. WA was positively but not sig-
nificantly correlated with LΔmax, ΔTmax, and Gtemp. Although 15
of the 28 urban parks have water bodies, the percentage and
extent of water-body areas in these 15 parks are limited (6 parks
have a water-body areas ratio > 10%, and 10 parks have a water-
body areas > 1 ha). PI was negatively correlated with LΔmax and
ΔTmax and positively correlated with Gtemp, but neither was sig-
nificant. In the park landscape configuration, only LSI showed a
significant positive correlation with LΔmax (0.389) and ΔTmax

(0.611) at the p < 0.05 and p < 0.01 levels, respectively, for the six
landscape level indices. This indicates that complex and diverse

landscape configurations within the park can achieve better
cooling effects. No significant correlations were found between
NDVI and MNDWI with LΔmax, ΔTmax, and Gtemp on the remote
sensing indices. Figure 9 shows the logarithmic and linear rela-
tionship between ΔTmax and PA and PP, respectively.

Threshold value of efficiency (TVoE). According to the loga-
rithmic fitting curve of ΔTmax to PA (y= 0.8284 ln(x)+ 1.4030
R²= 0.3407), the TVoE of Zhengzhou City Park was estimated to
be 0.83 ha (Fig. 9). This is of great significance for local park
planning and construction, indicating that planners can design
smaller spaces to achieve the best cooling effect.

Discussion
Effect of buffer zone extent on the PCI. Although the calcula-
tions for the PCEs were performed by creating buffers for thermal
images, the rules for buffer creation vary. The difference in the
range of buffers can have a different effect on the results. Previous
studies have built buffers based on the range of park width
multiples (Wang et al., 2022b), and have used ranges of 300, 600,
750, and 900 m (Yan et al., 2021; Shah et al., 2021b; Du et al.,
2022; Yao et al., 2022b). In addition, the step size of the buffer
varies; several are based on the resolution of the image as a step,
which considers the image characteristics (Geng et al., 2022),
while others use the width of the park as a step size, which
considered the morphological characteristics of the park.

Therefore, a combination of image resolution and park size was
considered. We used a buffer zone step of 30 m to establish two
levels of buffer zones, 300 and 600 m, and excluded large areas of
green belt and water bodies from the buffer zones. We analyzed
the LST distance between different buffers (Fig. 10). The
comparative analysis showed that: (1) the cubic polynomial fits
R² for the buffer at the 300 m range were all larger than those in
the 600 m range, agreeing with the findings of Peng et al. (2021)
and Tian et al. (2023). (2) Moreover, we found that when LΔmax

was larger than 300 m (parks 13, 21, and 23), a better fitting
relationship could not be obtained for the 300-m buffer at that
time because the fitting curve for parks 12 and 23 had no
downward turning point, and the LST scatter points for park 21
were all rising while the curves showed an inflection point. For
these parks, a buffer of 600 m was used instead. (3) When the
mean LST difference between the park and the first circle buffer
was large, the fitting result R² was small (parks 12, 18, 24, 25, 26,
and 28). This is caused by the presence of large water-body areas
within the park and thus the sharp change in surface temperature
with the surrounding urban land resulting in the inaccuracy of
ΔTmax and LΔmax. To obtain better fitting results, the average LST
of the park was masked and fitted again. At this time, the
description of the fitted curve was more consistent with the actual
characteristics and had a higher R² value, which further reduced
the error. In summary, the buffering methodology and the choice
of buffer zone extent established in this study for the
measurement of urban PCIs can be used as a reference for the
selection of other related studies in the future.

LST, PCI, and influencing factors. The results of our study
showed that 26 of the 28 urban parks had a lower average LST
than the average in Zhengzhou. Additionally, all 28 parks had
positive PCI indicators, meaning all 28 parks had a cooling
effect. We found that the park area and perimeter are important
factors affecting the average LST of the park; larger park areas
and longer perimeters correlated with lower park LST. In
addition, we found that the perimeter-to-area ratio had a
stronger effect on LST than the area and perimeter of the park.
Normally, urban parks are integrated areas consisting of three

Table 3 The correlation coefficients between influencing
factors and park LST.

Index Pearson correlation Sig.

PA −0.546** 0.003
PP −0.577** 0.001
PPAR 0.641** 0.000
GA −0.525** 0.004
WA −0.458* 0.014
PI 0.046 0.816
ED 0.066 0.737
PD −0.174 0.375
LSI −0.559** 0.002
SHDI 0.437* 0.020
SHEI 0.369 0.053
NDVI −0.045 0.819
MNDWI −0.116 0.555

*p < 0.05, **p < 0.01.

Fig. 7 Logarithmic function relationship diagram (PA-mean LST of park).
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types of landscape: green space, water-body areas, and imper-
vious surfaces. Of these, the first two types are the main sources
of cooling in the PCEs. Blue-green spaces in the park can reduce
LST through shading and evapotranspiration, and high specific
heat capacity and evaporation. These findings are consistent
with previous studies (Wu et al., 2020; Tan et al., 2021). At the
park landscape level, park mean LST was negatively correlated
with LSI, while SHDI was positively correlated. Thus, in the
limited and precious urban parkland, we can further reduce the
park’s LST by increasing the complexity of the park’s internal
landscape to obtain a better cooling effect.

In this study, three PCI metrics, LΔmax, ΔTmax, and Gtemp, were
used to quantitatively assess the cooling effectiveness of 28 urban
parks in Zhengzhou. Our findings suggested that urban parks can
be a great strategy for reducing the temperature in cities, thus
mitigating the UHI effect. The main factors affecting LΔmax were
PPAR, GA, and LSI; the main factors affecting ΔTmax were GA,
LSI, PP, PA, and PPAR; and the main factor affecting Gtemp was
PP. NDVI, MNDWI, and park cooling index had no significant
correlation, which may be due to the small number of sample
parks and small area of park water bodies.

Implications for urban park planning. Urban parks are
important blue-green infrastructures in cities that not only pro-
vide leisure and recreational space for inhabitants (Sun et al.,
2019) but are also an important sustainable initiative to mitigate
UHIs. In urban areas where land is expensive, rational planning
of urban parks and maximizing their cooling effect is a top
priority. Cooling in urban parks is a non-linear process similar to
a logarithmic function (Peng et al., 2021). The construction of
urban parks with a TVoE approach jointly considers the cooling
effect and size of parks to obtain optimal benefits. When enough
space and budget are available, comprehensive parks are the best
option because they have the lowest LST and large ΔTmax and
LΔmax, but this is often unrealistic for complex urban areas.
Community parks with lower costs and close to the TVoE can
provide a substantial ΔTmax gain. Yu et al. (2021) proposed an
idealized urban thermal security pattern model based on
threshold size and cooling distance. In urban park planning, a
network of urban parks of varying sizes—large, medium, and
small—contributes more to mitigating UHIs than a single isolated
park. Therefore, planners also need to focus on connecting urban
parks on a network to achieve an overall regional cooling of the

Fig. 8 Correlation diagram for LΔmax, ΔTmax, Gtemp, and influencing factors (*p < 0.05, **p < 0.01).

Fig. 9 Relationship between ΔTmax and park area, park perimeter.
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city (Sun et al., 2018). Moreover, the construction of more urban
parks should be accompanied by a focus on landscaping their
interior, e.g., designing parks with simple shapes, increasing the
area of internal green space, creating water-friendly spaces, and
increasing the fragmentation of the internal landscape. Our
findings provide a strong basis for the planning of urban parks.

Limitations and prospect. There are some limitations in this
study. First, the data used were limited in their temporal and
spatial resolution, so the results of the study are only able to
reflect the PCEs at the moment of satellite collection. In future
research, higher resolution and more comprehensive time-series
methods should be used to study the PCEs in-depth, such as

Fig. 10 Influence of different buffer zones on fitting curves of 28 urban parks.
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unmanned aerial vehicle remote sensing, ECOSTRESS (Liu et al.,
2022), and microclimate modeling (Wu et al., 2016). Second, the
influencing factors explored in this study were limited; more in-
depth factors such as humidity (Yan et al., 2023), 3D urban
landscape patterns (Han et al., 2023), and landscape connectivity
should be investigated. Third, the PCEs should be investigated
against different background climates (Geng et al., 2022), extreme
high temperatures and heat waves (Han et al., 2020), and the
social value of urban development and parks (Xiao et al., 2023) in
order to maximize the sustainability of the city and the quality of
life and well-being of its inhabitants.

Conclusions
In this study, the cooling effect of 28 urban parks in Zhengzhou City
was measured using three indices: ΔTmax, LΔmax, Gtemp. By analyzing
multiple indicators of the internal landscape of the parks using the
LST and these three indices, we drew the following conclusions: The
28 urban parks in Zhengzhou had a significant cooling effect.
The mean values of ΔTmax, LΔmax, and Gtemp were 3.22 °C, 194.02m,
and 1.78 °C/hm, respectively. The different buffer ranges affected the
results of the cubic polynomial fit, with the 300m buffer R² out-
performing that of the 600m buffer; however, specific parks should
be analyzed separately to calculate the most accurate park cooling
index. PP, LSI, PA, GA, and WA are vital features that strongly and
negatively affect the average park LST. In contrast, PPAR and SHDI
were positively correlated with park LST. LΔmax was positively cor-
related with GA and LSI. ΔTmax was positively correlated with GA,
LSI, PP, and PA. LΔmax and ΔTmax were negatively correlated with
PPAR. Gtemp was positively correlated with PP. For Zhengzhou City,
the most effective park size for improving the urban thermal
environment was 0.83 ha. In terms of their cooling effect, compre-
hensive parks were more efficient than theme parks, followed by
community parks. Our findings provide a new reference for the
planning, construction, and landscape configuration within local
parks to mitigate the UHI effect.

Data availability
The original datasets used in the study are included in the article,
further inquiries can be directed to the corresponding author.
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