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Abstract

Background: Ecological niche modeling integrates known sites of occurrence of species or phenomena with data
on environmental variation across landscapes to infer environmental spaces potentially inhabited (i.e., the
ecological niche) to generate predictive maps of potential distributions in geographic space. Key inputs to this
process include raster data layers characterizing spatial variation in environmental parameters, such as vegetation
indices from remotely sensed satellite imagery. The extent to which ecological niche models reflect real-world
distributions depends on a number of factors, but an obvious concern is the quality and content of the
environmental data layers.

Methods: We assessed ecological niche model predictions of H5N1 avian flu presence quantitatively within and
among four geographic regions, based on models incorporating two means of summarizing three vegetation
indices derived from the MODIS satellite. We evaluated our models for predictive ability using partial ROC analysis
and GLM ANOVA to compare performance among indices and regions.

Results: We found correlations between vegetation indices to be high, such that they contain information that
overlaps broadly. Neither the type of vegetation index used nor method of summary affected model performance
significantly. However, the degree to which model predictions had to be transferred (i.e., projected onto
landscapes and conditions not represented on the landscape of training) impacted predictive strength greatly
(within-region model predictions far out-performed models projected among regions).

Conclusion: Our results provide the first quantitative tests of most appropriate uses of different remotely sensed
data sets in ecological niche modeling applications. While our testing did not result in a decisive “best” index
product or means of summarizing indices, it emphasizes the need for careful evaluation of products used in
modeling (e.g. matching temporal dimensions and spatial resolution) for optimum performance, instead of simple
reliance on large numbers of data layers.

Background
Ecological niche modeling and the associated species
distribution modeling (here referred to collectively as
‘niche modeling’ for convenience) are techniques in
which occurrence data for biological phenomena are
related to raster geospatial data sets describing relevant
aspects of environmental landscapes to estimate species’
ecological requirements and potential geographic distri-
butions [1-3]. Much of the burgeoning activity in this

field has based inferences on climate data [4], yet cli-
mate data have severe limitations: (1) high spatial auto-
correlation in most climate features limits the spatial
resolution possible in inferences from such data sets,
(2) climate data do not reflect land use and land cover
(directly, at least) that provide important refinements to
distributional predictions [5], (3) climate data provide
only very limited ability to build time-specific elements
into such models [6,7], and (4) climate data for certain
regions and spatial resolutions will be mostly interpola-
tion rather than real information [4]. As a consequence,
researchers have begun using remotely sensed data in
these exercises [8,9]–remotely sensed data offer the
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potential for analyses at fine spatial resolutions, incor-
porating non-climatic dimensions into models, and
achieving excellent temporal resolution simultaneously.
Initial exploratory use of remotely sensed data in niche

modeling, however, has incorporated remotely-sensed
information rather uncritically. Some researchers have
used multi-temporal vegetation index values to character-
ize landscapes [e.g., [10]], whereas others have used sum-
mary statistics such as means and variances or more
complex summaries of seasonality and environmental
variability [11]; the relative efficacy of these different
approaches, however, has not been assessed quantitatively.
Similarly, although numerous indices and distinct remo-
tely sensed data products have been used (e.g., AVHRR,
MODIS, and Landsat imagery; NDVI, LSWI, EVI and
other indices; see examples in Figure 1), no detailed com-
parisons of the performance of the resulting niche models
have been presented. Perhaps the most detailed treatment
of such data sets to date used Fourier transforms to extract
signals of seasonality on global scales [11], which sounds
quite promising for improving such applications, but
neither the algorithms nor the resulting data have been
made openly available (A. T. Peterson to authors, in litt.,
2008, 2009). In general, although remotely-sensed data
sets have seen increasing use in niche modeling, they have
not seen adequate testing or evaluation to establish which
data sets and in which combinations will prove most
robust and adequate for such applications.
The purpose of this contribution is to develop a com-

parative analysis of six remotely-sensed data sets for
models of the distribution of avian influenza cases, lar-
gely in domestic poultry, in the Middle East and sur-
rounding areas. Although these veterinary cases affect
only domestic birds, the single highest-ranked risk factor
in all studies to date of H5N1 transmission has been
contact with (infected) poultry [12-14], so understanding
spatial risk in poultry infections has direct and immedi-
ate implications for human infections. Avian influenza
occurrences in this region have already been reported in
detailed analyses [15], but without careful evaluation of
the relative merits of the different remotely-sensed data
products that may be used for input. Here, we compare
and contrast predictions within and among four sectors
of the Middle East based on models incorporating three
vegetation indices derived from image data from the
MODIS sensor, each in the form of monthly values ver-
sus summary variables. The result is a first detailed view
of situations under which remotely sensed data can be
used most appropriately in niche modeling applications.

Methods
Study Region
Model tests were based on the four spatial subsets of
the Middle East and northeastern Africa (Figure 2) that

EVI 

 

LSWI 

 

NDVI 

 
Figure 1 Detail of the Nile Delta in January 2005, to illustrate
patterns reflected in values of the three remotely sensed
indices explored in this study. The gray scale illustrates gradients
from low (white) to high (black) values of each index. (a) Enhanced
Vegetation Index, (b) Leaf Surface Water Index, (c) Normalized
Difference Vegetation Index.
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were originally analyzed in an earlier contribution [15].
These subregions were chosen based on spatial contigu-
ity, reporting characteristics and consistency, and num-
bers of avian influenza case occurrence rates in poultry.
We used these four spatial subsets to partition the over-
all region for testing the predictive ability of models.

Environmental Datasets
Environmental datasets consisting of 12 monthly com-
posite remotely-sensed data layers for 2005 were
assembled, summarizing maximum values for 8-day
time series of the Enhanced Vegetation Index (EVI),
Normalized Difference Vegetation Index (NDVI), and
Land Surface Water Index (LSWI; see Figure 1 for
example comparisons). Layers were derived from the
Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite-based sensor at a spatial resolution of
500 m. Resolution for all layers was coarsened subse-
quently to a 5 km resolution, via nearest-neighbor
resampling, owing to computational limitations and con-
cerns regarding the spatial accuracy of the occurrence
data. Summary statistics layers, including maximum,
mean, minimum, range, and standard deviation across
the 12-month period, were produced for each index,
resulting in 17 raster data layers (12 monthly summaries
and 5 summary statistics) for each index (EVI, LSWI,
NDVI). Owing to concerns regarding the effects of snow
cover on the EVI and LSWI indices [16], we also

conducted limited tests for EVI-based models trained in
the Balkans-Caucasus region based on only the snow-
free months to see whether excluding months with
snow cover would improve model predictivity.

Occurrence Points
Geographic coordinates for 610 spatially unique case
occurrences of highly pathogenic avian influenza of the
H5N1 strain (31 from the Arabian Peninsula AP, 18
from the Levant-Iran LI, 386 from northeastern Africa
AF, and 175 from the Balkans-Caucasus BC regions)
were drawn from the World Organization for Animal
Health [17] databases as part of a previous study [15].
These case-occurrences included virus isolations from
wild birds, zoo birds, and commercial and backyard
poultry.

Ecological Niche Modeling
Ecological niches were estimated using the Genetic
Algorithm for Rule-set Prediction [GARP; [18]], an evo-
lutionary-computing algorithm that has been applied
widely to questions of disease transmission [19]. GARP’s
predictive ability has been tested under diverse circum-
stances [3,20,21] and has been demonstrated to yield
highly predictive hypotheses similar to those produced
by other methods [e.g., Maxent; [22]]. GARP has been
the basis for both of our previous studies of avian influ-
enza transmission ecology and geography, showing
highly statistically significant predictive ability [15,23].
Within GARP processing, input occurrence data are

divided randomly into three subsets: training data (25%;
for model rule development), intrinsic testing data (25%;
for intrinsic evaluation and tuning of model rules) and
extrinsic testing data (50%; for evaluation of model qual-
ity and filtering among replicate models, see below).
Spatial predictions of presence versus absence can
include two types of error: false negatives (areas of
actual presence predicted absent) and false positives
[areas of actual absence predicted present; [24]]; rule
performance in terms of overall error is evaluated via
the intrinsic data set. Changes in predictive accuracy
from one iteration to the next are used to evaluate
whether particular rules should be incorporated into the
model or not, and the algorithm runs either 1000 itera-
tions or until convergence [18]. The final rule set is
then used to query the environmental data sets across
the study region to identify areas fitting the rule-set pre-
diction, producing a hypothesis of the potential geo-
graphic distribution of the species [25], or in this case,
of the potential area for disease transmission.
Since GARP processing includes several random-walk

components, each replicate model run produces distinct
results, representing alternative solutions to the optimi-
zation challenge. Consequently, following recommended

Figure 2 Summary of four subregions of the Middle East
across which models were developed and predictions tested:
AF = northeastern Africa, BC = the Balkans and Caucasus
region, LI = the Levant and Iran, and AP = the Arabian
Peninsula. Occurrence points for H5N1 avian influenza are shown
as dark symbols.
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best-practices approaches [21], we developed 100 repli-
cate versions of each model. We filtered these replicates
based on their error characteristics to emphasize the
overriding importance of omission error (as opposed to
commission error), retaining the 20 models showing the
lowest false-negative rates (= percentage of independent
testing points falling in areas not predicted to be suita-
ble), and then retaining the 10 (of the 20) closest to the
median of the proportional area predicted present
among models, an index of false-positive error rates
[21]. A consensus of these ‘best subset’ models was then
developed by summing values for each pixel in the map
to produce final predictions of potential distributions
with 11 thresholds (i.e., integers from 0 to 10).

Model Testing
Our aim throughout this contribution is to develop
robust comparisons of model performance based on dif-
ferent remotely sensed data products (EVI, NDVI,
LSWI) summarized in different ways (monthly values,
summary statistics) across four regional datasets. The
predictive challenge was to anticipate the spatial distri-
bution of H5N1 avian influenza case-occurrence data
within and among the four study regions in the Middle
East and northeastern Africa. Hence, we created GARP
models for all possible combinations of the following
categories of occurrence and environmental data:
• Index category: To evaluate performance of different

MODIS satellite data product types and effects on
model predictivity, models were run based on environ-
mental data sets of EVI, NDVI, LSWI, or the combina-
tion of all three.
• Index type: To evaluate model performance based on

monthly index data versus summary data, models were
created based on either the 12 monthly values of each
index, or on the 5 summary statistics for each index, as
well as on all 17 datasets available for each index.
• Modeling level: An important additional dimension is

whether model predictions are simply interpolating
among closely approximated training occurrence points,
or whether they are being ‘transferred’ to other land-
scapes, on which sampling may be scanty or nonexistent
[20]. Hence, we developed the following: (1) four analyses
within single regions (i.e., training and testing data ran-
domly selected from the same region, using only data
from that region), (2) four in which three regions predict
one (i.e., training based on occurrence points from three
regions and projecting onto and validation in the fourth),
and (3) four in which one region predicts three (i.e.,
training models within one region and projecting models
onto and validation in the other three regions),
This modeling scheme thus resulted in a total of 4 ×

3 × 12 = 144 GARP runs, summarized in Additional file
1: Appendix 1 and Additional file 2: Appendix 2.

Because our models are based on presence-only data,
and because information documenting absences of suit-
ability for influenza transmission across the Middle East
are unavailable, customary approaches to model valida-
tion (e.g., receiver operating characteristic, kappa statis-
tics) are neither appropriate nor applicable. As a
consequence, we modified the receiver operating charac-
teristic (ROC) approach so as not to depend on absence
data by recasting the (1 - specificity) axis as the propor-
tional area predicted present following Phillips et al.
[26] and Peterson et al. [22]. The area under the curve
(AUC) of traditional ROC approaches undervalues mod-
els that do not provide predictions across the entire
spectrum of proportional areas in the study area [22]; in
addition, traditional ROC approaches incorrectly weight
the two error components (omission and commission)
equally [22]. As a consequence, we used a modification
of ROC that remedies these problems, a partial-area
ROC approach that evaluates only over the range of the
prediction, and potentially allows for differential weight-
ing of the two error components [22].
We performed partial ROC analyses for each of the

144 model predictions, based on the independent sets of
testing points not used to train the models. We calcu-
lated these values using a program developed by N.
Barve and colleagues (pers. comm.; available upon
request from the authors); we present our results as the
ratio of the model AUC to the null expectation [AUC
ratio; [22]]. AUC ratios were limited to the proportional
area over which models made predictions, and expected
error parameters of 0% (E = 100, equivalent to tradi-
tional ROC analyses) and 5% [a more appropriate para-
meter value for niche modeling applications; [22]] were
both calculated for comparison. Bootstrapping to evalu-
ate the statistical significance of AUC ratios compared
to the null was performed by resampling 50% of the test
points with replacement 1000 times from the overall
pool of testing data; one-tailed probabilities associated
with AUC ratios were assessed by counting numbers of
bootstrap replicates with AUC ratios less than 1 (here-
after referred to as P, [Table 1, Additional file 1: Appen-
dix 1, and Additional file 2: Appendix 2]). AUC ratios
and P were explored further using general linear model
(GLM) analysis of variance (ANOVA) and post-hoc
Tukey-Kramer tests, using the statistical software pack-
age Minitab 14®.

We compared predicted occurrence values (i.e.,
GARP-derived suitability thresholds ranging 0-10) from
different modeling exercises to establish how consistent
within-region patterns are with broader patterns of eco-
logical associations. Specifically, we compared within-
region-trained model predictions to values predicted
for the same region by models trained based on the
three other regions–this comparison illuminates the
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uniqueness of the occurrence-environment association
for particular regions. We used fuzzy map comparison
approaches to evaluate overall correspondence, via the
Fuzzy Inference System in the Map Comparison Kit
[MCK; [27]], which accounts for possible imprecision in
correspondence among maps–pixel shifts over minor
spatial extents may exist, which would confuse methods
based on exact matching, but which are accounted for in
fuzzy comparisons. Fuzzy comparisons were made
for summary index types only, resulting in 4 index
categories × 4 regions = 16 comparisons (Table 2).
To test whether snow cover altered EVI values enough

to bias model predictions, we re-ran 8 models (three
regions predict one, monthly and monthly + summary sta-
tistics) where AF, LI, and AP predicted occurrences in BC.
Because the BC region receives the most seasonal snowfall
of our four regions, testing models using BC points would
be most likely to reveal any discrepancies owing to snow
biased EVI values. Environmental data from months
November to February, when BC receives the most snow,
were removed from model construction. Paired t-tests
comparing AUC ratios and P values at E = 100 and 5%
including and excluding winter months resulted in all
non-significant test values, thus we did not consider our
EVI data to be biased markedly by snowfall, and used
complete 12-month models for all further analyses.
Finally, we explored the degree to which the different

MODIS satellite indices provide independent sets of
information, as opposed to highly correlated and redun-
dant information. To examine this possibility, we deter-
mined Pearson product-moment correlations for each
pairwise combination of the three indices (EVI, LSWI,
NDVI) based on the five summary statistics (max, mean,
min, range, standard deviation) calculated for each of
the four study regions. We generated 10,000 random
points within each region, and extracted index values
for each statistic at each point in ArcGIS (version 9.2),
resulting in 3 indices × 5 summary statistics × 4 regions
= 60 comparisons. Correlations were calculated from
these data using Minitab 14®.

Results
Model building and testing was based on four geographic
regions and 610 occurrence data points divided variously
into different training and testing sets (Figure 2). Sam-
pling was least dense in the Levant-Iran (LI) region (only
18 occurrence points), with the greatest concentration of
points within this region in Israel. The northeastern
Africa (AF) region had the most occurrence points (386),
with the vast majority clumped along the Nile River and
its delta. Sampling was most widespread and even across
the Balkans-Caucasus region (175), with points distribu-
ted across multiple countries.
In all, 144 niche models were developed for this study.

The associated tests of predictive ability indicated that
independent testing points often coincided with model

Table 1 Summary of General Linear Model ANOVAS in this study

E = 100 E = 5%

Test Variable Random variables AUC ratio P AUC ratio P

Index Test region 1.00 ns 0.51 ns 1.36 ns 2.28 ns

Data type Test region 0.03 ns 0.38 ns 1.97 ns 0.69 ns

Training region (all) None 1.23 ns 1.33 ns 3.87 ** 2.47*

Training and testing region (within) None 14.86** 4.97** 55.35** 6.90**

Testing region (all) None 8.02** 7.57** 4.80** 6.11**

Model Level (within region, three predict one, one predict three) None 23.02** 7.76** 8.68** 5.93**

F-values are reported for the test variable only. * denotes significance at the a = 0.5 level, ** denotes significance at a ≤ 0.01; ns = non-significant. “Index”
indicates EVI, LSWI, and NDVI; “data type” indicates monthly versus summary data; “training region” and “testing region” refer to the 4 regions, analyzed either
based on performance in all analyses ("all”) or only in within-region analyses ("within”); and “model level” refers to numbers of regions predicting versus being
predicted.

Table 2 Fuzzy Interpolation values of model performance
comparing predicted occurrence values (GARP thresholds
0-10) of within region models (occurrence points within
region) to values predicted for the same region by
models produced using the three other regions
(occurrence points outside of region predicted)

Region Index Fuzzy kappa value

AF LSWI 0.229

AF EVI 0.472

AF NDVI 0.225

AF LSWI, EVI, NDVI 0.275

LI LSWI 0.279

LI EVI 0.175

LI NDVI 0.381

LI LSWI, EVI, NDVI 0.190

BC LSWI 0.325

BC EVI 0.288

BC NDVI 0.362

BC LSWI, EVI, NDVI 0.316

AP LSWI 0.276

AP EVI 0.596

AP NDVI 0.410

AP LSWI, EVI, NDVI 0.407
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predictions considerably better than random expecta-
tions. In all, 70 model predictions were significantly
more coincident with independent testing data (boot-
strap value, P < 50; see Additional file 1: Appendix 1
and Additional file 2: Appendix 2) when no error con-
siderations were weighed (i.e., E = 100). A slightly better
81 model predictions were significantly better than ran-
dom expectations when some nonzero expectation of
error was included (E = 5%). A paired t-test for differ-
ences between all model AUC ratios when E = 100
(mean 1.16) and 5% (mean 1.06) was significant (T =
7.01, p < 0.001), indicating that model fit improved with
the error consideration. An identical test for P when
E = 100 (mean 258) and 5% (mean 200) was also signifi-
cant (T = 2.62 p = 0.01). E = 5% also reduced the var-
iance in AUC ratios (Levene’s test for equal variances,
L = 28.93, p < 0.005) but not in P (L = 1.88, p = 0.171).

Within Regions
These tests evaluated the ability of models to predict
H5N1 case occurrences based on subsets of known
occurrence points within regions based on different
remotely sensed data products. Models based on all com-
binations of index and data type resulted in 16 models
and associated tests, producing reasonably similar pat-
terns of predictivity (Figure 3). Validation tests based on
independent sets of occurrence points concluded
that model fit was generally good (Additional file 1:
Appendix 1): 63% of model predictions were significantly
better than random for E = 100, and 56% were significant
for E = 5% (Additional file 2: Appendix 2).
Model fit varied widely among regions. AF was the

region that showed the best predictivity, as 100% of
tests were highly significant (all bootstrap values P < 50,
regardless of E). However, AF also showed great varia-
tion in patterns of spatial suitability predicted. For
example, a model based on summary EVI data predicted
high suitability in southern Sudan, Ethiopia, and Soma-
lia, while other models predicted high suitability only in
the northern portion of the region (northern Sudan and
Egypt; see Figure 3). Regions AP, BC, and LI were more
variable in predictive ability, with 50%, 31%, and 22% of
models resulting in significant predictions, respectively.

Three Regions Predicting One
These tests evaluated the predictive success of models
based on occurrence points from three regions in the
challenge of predicting suitability for H5N1 case occur-
rences in the fourth region; hence, the model was tested
with independent occurrence points from that region.
Because of the relative spatial independence of the train-
ing vs. testing points, predictive success in these tests
was lower as compared with those of within region pre-
dictions: 35% showed significant predictive ability when

E = 100, and 56% when E = 5% (Additional file 2:
Appendix 2).
Again, model fit varied among regions: AP and AF

had the greatest number of models significant, with 75%
and 58% of tests showing significance, respectively. LI
tests were 46% significant and BC was least predictive,
with only one test (4%) showing predictivity better than
random expectations. Geographic regions predicted as
suitable for H5N1 case occurrences were also more
diverse across types of model input than within region
predictions (Figure 4). For example, in AF, models var-
ied widely in predicting suitability restricted either to
the vicinity of the Nile River or throughout surrounding
areas (Figure 4). However, some regions were predicted
as suitable consistently by all of the models: the Nile
River and its delta, southern Somalia, coastal eastern
Saudi Arabia, central Iran, and coastal western Turkey
(Figure 4). Despite this general model agreement, these
spatially stratified model predictions did not match well
with those of within-region models: fuzzy pattern
matching values evaluating pattern agreement among
the two suites of models were all below 0.6, while close
agreement is considered as values above 0.7 [Table 2;
[27]].

One Region Predicts Three
This modeling challenge was clearly the most difficult:
predicting spatial patterns of suitability across three
regions based on independent occurrence points in the
fourth. Twelve models were created for each set of
three regions utilizing the previous combinations of
index and data type (Additional file 1: Appendix 1;
results not shown). For E = 100, 48% of model predic-
tions were significantly better than random expecta-
tions, while 56% were significantly better than random
at E = 5% (Additional file 2: Appendix 2). The region
from which models were best able to predict suitability
across the other three was BC, with 83% of models sig-
nificant, while the one least able to predict regional
suitability was AF, with only 21% of models significant.
We suspect that this variation in predictive ability
reflects the degree to which the environments in the
model training region are representative of the environ-
ments in the testing region, eliminating the need for
model clamping [26].
Regions predicted as suitable for H5N1 varied immen-

sely, highly dependent upon the region used to calibrate
models. For example, when AF modeled occurrence in
LI, BC, and AP, the most suitable regions included the
Fertile Crescent and the deserts of southwest Iraq, east-
ern and southern Saudi Arabia, Yemen, and Oman. In
contrast, LI predicted occurrence in the opposite regions
of BC, AP and AF, such as southern Iran and the east-
ern coast of the Red Sea. Most models, however,
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reached a consensus that the most likely areas for H5N1
suitability include the Nile River and its delta, southwest
Somalia, and the coastal region along the Azir moun-
tains of Saudi Arabia and the Sarawat mountains of
Yemen.

Overall Trends
Analyses of model performance across all index categories,
index types, and modeling levels produced interesting
results (Table 1). First, no difference in model performance
was detectable among indices (ANOVA, F = 1.00,

Monthly EVI Monthly LSWI 

  
Summary EVI Summary LSWI 

  
 

Figure 3 Within-region model predictions of H5N1 avian influenza case occurrences for monthly and summary statistic index
datasets, and for Enhanced Vegetation Index and Leaf Surface Water Index. Shading indicates model agreement in predictions of
presence: white = all models predict absence to black (all models predict potential for presence). In each map, predictions from the four within-
region predictions are mosaicked. Data used in testing models are shown for each region within the mosaics.
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p = 0.396, when E = 100, F = 1.36, p = 0.258, when E = 5%).
We also found no difference in model performance
between monthly and summary index datasets (ANOVA,
F = 0.03, p = 0.974, when E = 100, F = 1.97, p = 0.143,
when E = 5%). This lack of significant difference likely indi-
cates that correlations across the study area are high among

the different environmental data sets, and that each pro-
vides little independent information, at least at this broad
spatial extent.
We did, however, observe significant differences in pre-

dictive ability of models among regions (Table 1). Predic-
tive ability differed among regions tested intrinsically

Monthly EVI Monthly LSWI 

  
Summary EVI Summary LSWI 

  
 

Figure 4 Among-region model predictions of avian influenza case occurrences for monthly and summary statistic index datasets, and
for Enhanced Vegetation Index and Leaf Surface Water Index, in which occurrence data from three regions are used to predict the
distribution of case occurrences in the fourth region. Shading indicates model agreement in predictions of presence: white = all models
predict absence to black (all models predict potential for presence). In each map, predictions from the four regional predictions are mosaicked.
Data used in testing models are shown for each region within the mosaics.
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with random samples of occurrence points and in spa-
tially-stratified predictions among regions (Table 1).
Regional differences were also noted (ANOVA, all p ≤
0.003) in tests of effects of modeling level (i.e., prediction
within regions, three regions predict one, one region pre-
dicts three). Post hoc tests on each test variable (AUC
ratios and P when E = 100, 5%) showed pervasive differ-
ences among mean values between predictions within
regions and one region predicting three (Figure 5). By
region, Pearson correlation coefficient values (not shown)
for each pairwise combination of indices (EVI, LSWI,
NDVI) by each of the five summary statistics averaged
0.687 (range, 0.052 to 0.984). There were no observed
differences in index correlation among regions (Figure
6b, ANOVA F = 1.33, p = 0.273). Significant differences
were apparent in correlation values among the summary

statistics (Figure 6a, ANOVA F = 6.18, p < 0.001). Mini-
mum values compared across index types over all four
regions were less correlated than the other 4 summary
statistics. High correlations between indices were also
observed (Figure 6c): index types EVI and NDVI, both
measures of photosynthetic mass, were consistently more
similar to each other than any of the other index pairs
(ANOVA F = 9.72, p < 0.001).

Discussion
This study presents a first detailed comparative analysis
of different remotely sensed data products as input
information into ecological niche models. Our analyses
are based on a spatially stratified model evaluation strat-
egy, in which different geographic regions are used to
train models and test model predictions. Furthermore,

AUC ratio, E = 100 P < 1, E = 100 

  

AUC ratio, E = 5% P < 1, E = 5% 

  

Figure 5 Means and standard errors for all four test statistics (AUC ratio and P at E = 100, 5%) by modeling level. Bars labeled with
unique letters denote significant differences between categories (Tukey-Kramer post-hoc tests).
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our use of the partial ROC approach allows considerably
greater confidence in the model evaluation statistics, as
it avoids several of the artifactual complications inherent
in traditional implementations of ROC testing [22].
Although our analyses are based on veterinary cases,

previous analyses of risk factors associated with H5N1
transmission have indicated an intimate tie between
poultry infections and human cases [12-14], so the mod-
els presented here offer a view into human transmission
risk not otherwise available in the Middle East region.
Our results indicate that such data can provide a rich
basis for modeling environmental correlates of occur-
rence (more or less equivalent to an ecological niche),
and offer significant advantages in terms of spatial and
temporal resolution, information content, and lack of
need for interpolation. As such, we interpret the results
of this study as confirming broadly and elucidating the
role of remote sensing data in niche modeling exercises,
which offered spatial predictions that were frequently
much more informative than random expectations.
Our results could be interpreted as equivocal, in that

we did not detect significant differences among vegeta-
tion index categories and vegetation index types in pre-
dictive ability of models. This non-effect could result
from several factors. Among the artifactual causes that
should be considered is the possibility that the avian
influenza case occurrence data on which we based the
tests could simply be too “noisy” to permit successful
niche model development. Although the avian influenza
data are far from perfect, they have nonetheless sup-
ported two detailed niche modeling exercises in the past
[15,23] with considerable success.
An alternative explanation, and one that we favor, is

that the information essential to the different vegetation
indices is–in the end–derived from the same remotely
sensed images, and in many cases from the same actual
bands of data. In this sense, while the different vegeta-
tion indices (NDVI, EVI, LSWI, etc.) are not equivalent,
the key information in one may overlap very broadly
with that in another. NDVI, EVI and LSWI are related
to leaf area index, canopy chlorophyll content, and
water content, respectively [16]; these vegetation proper-
ties are closely related to each other. In the case of
large-scale modeling at relatively coarse spatial resolu-
tion (e.g., 5-km gridcell in this study) we suspect that
the important information in these vegetation indices
may be highly correlated, such that one does not offer
significant and consistent advantages over any other.
Finally, in spite of known complications in EVI calcula-
tions for images in which snow cover is present [16], we
found no marked improvement of models built in

Correlation by Summary Statistic 

 

Correlation by Region 

 

Correlation by Index 

 

Figure 6 Means and standard errors of correlations among
data points by index types, based on index values at 10,000
random geographic points across the study region. Panel (a)
shows differences in mean index correlation by summary statistic.
Panel (b) shows no difference in index correlation among study
regions. Panel (c) show that indices EVI and NDVI are more similar
to one another than EVI/LSWI or NDVI/LSWI. Bars labeled with
unique letters denote significant differences between categories
(Tukey-Kramer post-hoc tests).
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seasons lacking snow cover, but use of EVI is probably
best restricted to times and places lacking snow cover
nonetheless, in other words, within the plant growing
season.
Perhaps the clearest and most important insight from

our analyses is the trends in predictive success manifested
as a negative relationship between model predictivity and
the degree of transferability required of the model. That is,
for within-region predictions, model performance was
quite good, but for three-regions-predict-one-region and
one-region-predicts-three-regions, the model predictions
were successively less robust. In essence, spatial autocorre-
lations make the within-region tests relatively easy, while
cross-regional transfers of model predictions are more dif-
ficult; in the worst cases, these predictions must transfer
into regions with environments little-represented in the
training region, thus introducing an element of extrapola-
tion into predictions, a situation in which models are not
likely to be robust. We noted, perhaps more than in other
applications, a fair amount of variation among models as
to the spatial location of areas predicted as highly suitable
for H5N1 transmission–as such, we recommend develop-
ment of large numbers of models and seeking of broad
central tendencies, rather than interpreting the details of
single or small sets of models.

Conclusions
In sum, this paper illustrates a variety of points regard-
ing the use of remote sensing data as data inputs to
ecological niche models (or the related species distribu-
tion models, for that matter). While our testing did not
detect a “best” index product or means of summarizing
indices, it points to the need for careful and detailed
understanding of patterns of intercorrelation and nonin-
dependence among these data products, such that
“quality” trumps “quantity,” and the clear focus should
be on correct matching of temporal dimensions, spatial
resolution, and other qualities, rather than on inclusion
of huge numbers of data layers in analyses. We hope
that this paper will stimulate others to incorporate
these datasets into their research and modeling endea-
vors, as they provide a rich and detailed basis for such
models.

Additional material

Additional file 1: Appendix 1: Summary of models developed and
partial ROC test results. Each of the 144 models developed are
displayed along with associated AUC and P values for error rates of E =
100 and E = 5%.

Additional file 2: Appendix 2: Summary values for model results by
testing parameter. Model summary statistics (AUC, P, PSM) are reported
for each category of testing parameter with error rates of E = 100 and
E = 5%.
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