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Abstract: Grasslands in the Southern Great Plains of the United States have major ecological and
economic importance, with strong climate and water cycle connections. The historic native prairie
grassland has been managed differently for enhancing productivity, while consequently altering
water vapor fluxes. However, little is known about the impacts of different management activities
on evapotranspiration (ET) at different spatio-temporal scales. In this study, we quantified and
compared ET between co-located introduced managed pasture (MP) and native prairie (NP) pasture.
Additionally, we compared the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived
ET at four different spatial scales: 30 m (ETMOD30), 200 m (ETMOD200), 500 m (ETMOD500), and 1000 m
(ETMOD1000) with eddy covariance-measured ET (ETEC). Large differences in ETEC were observed
between two pastures from half-hourly to seasonal scales, with variations mainly controlled by the
amount of rainfall and management activities. The results demonstrated differential responses of MP
and NP in a pluvial year. The ETMOD30 showed a better agreement with ETEC than did the ETMOD200,
ETMOD500, and ETMOD1000. The ETMOD200, ETMOD500, and ETMOD1000 largely underestimated ETEC,
most likely due to their inability to capture the spatial heterogeneity of vegetation growth impacted
by various management activities. Our results facilitate understanding of the difference in ET of MP
and NP due to differences in vegetation resulting from different management activities and their
differential responses to precipitation.

Keywords: evapotranspiration; native prairie; managed prairie; spatial scales

1. Introduction

Major grassland areas occur in Russia, Australia, China, and North America [1–3].
Grasslands cover about 30% of the land area of North America and play a major agro-
economic role due to their linkage to livestock industry in this region. Additionally, these
grasslands play an important role in the regional carbon and water cycles [4]. Anticipated
increases in the demand for beef are expected to intensify land use demands on the
grassland ecosystem, with potentially adverse environmental risks. Additionally, the major
grassland areas of this region are in the water limited areas (semi-arid region); thus, the
region’s ecosystem processes are primarily controlled by water availability, and water loss
from the ecosystem is dominated by evapotranspiration (ET) accounting for about 90–95%
of the annual precipitation. Therefore, it is necessary to understand the water use and loss
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from grassland ecosystems to enhance higher grass production under limited water supply
via better management strategies.

The once predominant native prairie (NP) pastures of the Southern Great Plains (SGP)
of the United States have been largely converted into introduced and managed prairie (MP)
pastures to enhance forage productivity [5,6]. Because carbon and water exchange processes
are tightly coupled, management practices to increase grassland productivity may also
impact water usage. Although there are several studies on water exchange in grassland
ecosystems [7–10], relatively few studies have examined the impacts of management
activities on grassland ET [11–13]. A detailed quantification of ET from co-located NP
and MP with respect to different management schemes and different temporal scales
(from hourly to daily to seasonal/annual scales) is lacking. In addition, quantifying and
comparing ET under different hydrologic conditions such as relatively wet years versus
dry years is fundamental for better understanding of ecosystem functions because ET
directly links several physiological processes in an ecosystem [14,15]. It is hypothesized
that different magnitudes of ET can be expected between NP and MP under variable wet
and dry climatic conditions as water usage by multi species (NP) and monoculture (MP)
pastures can differ markedly even in the same environment. Therefore, this comparative
study between co-located NP and MP prairie pastures with similar climate, topography,
and soil is intended to provide better insights on how these two pasture types respond to the
same climatic conditions under different management. This study also has importance for
sustainable pasture management under the highly volatile climate (e.g., greater variability
of dry-wet dipole events) of the SGP [16,17].

The concept of paddock grazing by cattle has resulted in different sizes of pastures
with different management activities. Therefore, there is a larger spatial variability of grass
growth depending upon duration and intensity of grazing. The estimation of grass growth
at the paddock scale has been previously explored at the 10–30 m scale using relatively
small footprint global satellite imagery from Landsat and Sentinel 2 [18–20]. However, the
information on plant growth heterogeneity retrieved from the finer resolution sensors has
not been sufficiently extended to understand the water status of heterogeneous pasture
paddocks. Although the most commonly used satellite ET data is available globally
at 500 m spatial resolution from the Moderate Resolution Imaging Spectroradiometer
(MODIS) Global Evapotranspiration Product (MOD16), the scale of these observations
may still be too coarse to distinguish finer scale land management, water use, and ET
patterns in heterogeneous grasslands [21,22]. When compared to ET from eddy covariance
measurements (ETEC), the ET derived from MOD16 (ETMOD500) was underestimated, with
reported uncertainties up to 60% in monthly ET, mostly attributed to lack of resolution
in landscape heterogeneity due to the coarse sensor footprint [23–25]. The footprint of
ETEC can range from less than 100 m to hundreds of meters depending on tower height
and several other factors. Thus, ETEC can be used to validate the satellite-estimated ET
at different spatial scales. In this study, we compared ETEC from contrasting MP and
NP pastures, with alternative MOD16 based ET simulations derived at different spatial
resolutions (30 m, 200 m, 500 m, and 1000 m). A guiding hypothesis for this investigation
is that the satellite-based ET estimated at finer spatial scale provides the best accuracy and
performance relative to the field-measured ETEC for both natural and managed grassland
pastures characteristic of the SGP region. Regarding the recognized variability of ET due
to the spatial variability in vegetation growth resulting from pasture management, the
investigation of ET at different spatial scales by comparing between differently managed
pasture is very useful. This study can guide the development of ET products at the finer
spatial scales for sustainable water use in different pastures systems of SGP.

2. Materials and Methods
2.1. Study Sites

Two co-located MP and NP flux sites (flux towers are 500 m apart) located at the
United States Department of Agriculture (USDA), Agricultural Research Service (ARS),
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Grazingland Research Laboratory (GRL) in El Reno, Oklahoma (OK) were used in this
study (Figure 1). These sites are representative of the grasslands of the SGP, which are
characterized by sub-humid climate and mean annual temperature of ~15 ◦C, with monthly
average temperature ranging from −13 ◦C in the coldest month (Jan) to 36 ◦C in the
warmest month (Aug). The long-term average annual rainfall (1980–2010) is about 860 mm,
but with larger interannual variability ranging from 200 mm (2003) to 1300 mm (2015).
Rainfall patterns follow a bimodal distribution, with 30% of annual rainfall in spring
(Feb–Apr) and 25% in autumn (Aug–Oct). Soils in the two grassland sites are largely Norge
loamy prairie (Fine, mixed, thermic Udertic Paleustalf) with a depth greater than 1 m, high
water holding capacity, and slope averaging about 1% (USDA1999).
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Figure 1. Location of the study sites: managed pasture (MP) and native pasture (NP). Green, red,
and blue rectangles represent the 1000 m, 500 m, and 250 m MODIS pixels, respectively, and the red
circles inside the rectangle represent the location of eddy covariance tower.

History of pasture establishment and management for two pastures are as follows:
Managed pasture (MP) site: The MP site was converted from an NP by planting old

world bluestem (Bothriochloa caucasica C. E. Hubb) in 1998 [26]. After the establishment
of the pasture, the site has received varying management operations including burning,
baling, fertilizer, herbicide, and cattle grazing [27,28]. Significant management activities
during or prior to the study period in the MP included:

1. burning in 2001, 2009, 2010, and 2014;
2. periodic fertilizing and herbicide spraying (e.g., nitrogen fertilizer of about 67 N kg ha−1

and 44 kg N ha−1 was applied in 2007 and 2009, respectively);
3. significant biomass was removed from the pasture by haying every year from 2008 to

2011, and in 2014 and 2016;
4. the pasture was grazed with different stocking density almost every year except in

2006 and 2007.

Native pasture (NP) site: Tallgrass prairie is predominantly warm season vegetation
representing the native, mixed species grassland of Oklahoma. The site has mixture of C4
and C3 species. The dominant C4 species were big bluestem (Andropogon gerardi Vitman),
little bluestem (Schizachyrium halapense (Michx.) Nash), Indian grass (Sorghastrum nutans),
and crab grass (Digitaria sanguinalis). The major C3 species were tall fescue, perennial rye
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grass, Kentucky bluegrass, bermudagrass, and other forbs. The pasture has been minimally
managed over the years, except for cattle grazing, prescribed burn, and weed control by
spraying herbicide. The details on the management activities at MP and NP sites in 2015
and 2016 are presented in Table S1.

2.2. Data
2.2.1. Eddy Covariance ET (ETEC) Data Collection and Processing

Eddy covariance (EC) towers were deployed to measure ET from MP (35.5685, −98.0558)
and NP (35.54865◦, −98.03759◦). Continuous 10 Hz frequency (10 samples s−1) of H2O
fluxes was measured from the two pastures from January 2015 to December 2016. In both
pastures, a three-dimensional sonic anemometer (CSAT3, Campbell Scientific Inc., Logan,
UT, USA) and an open path infrared gas analyzer (LI-7500, LI-COR Inc., Lincoln, NE, USA)
were mounted in a tower structure at a height of 2.5 m from the ground with the fetch
area of about 300 m in all directions. The EC system was set up near the center of each site
facing south, towards the prevalent wind direction. Additional sensors were deployed to
measure other meteorological and soil variables as listed in Table 1.

Table 1. List of the auxiliary sensors deployed at the study sites for the measurement of meteorological
and soil variables.

Name of Sensors Variables Measured Company Name

Quantum sensors photosynthetic photon
flux density (PPFD) LI-190, LI-COR Inc., Lincoln, NE, USA

Net radiometers net radiation (Rn) CNR1, Kipp and Zonen, Delft, The
Netherlands

Temperature and
relative humidity probes

Temperature and relative
humidity of air HMP45C, Vaisala, Helsinki, Finland

Soil heat flux sensors soil heat fluxes (G) HFT3.1, Radiation and Energy Balance
Systems, Inc., Seattle, WA, USA

Hydra probe Soil moisture content Stevens Water, Inc., Portland, Oregon,
USA

The EddyPro software (LI-COR Inc., Lincoln, NE, USA) was used to process the raw
data into 30-min ET values. Quality flags (QC/QA) were applied to screened data as
identified by the software (0: good quality, 1: medium quality, and 2: bad quality). During
the quality check, we also excluded data outside a ±3.5 standard deviation range from a
14-day running mean window [29]. This allowed us to filter out the data outside of the
accepted range [30–32]. The gaps in the dataset created due to filtering of bad quality
and unreliable values and malfunctioning of the sensors were gap filled using REddyProc
package, developed at the Max Planck Institute for Biogeochemistry, Jena, Germany [33,34].
Mean diurnal variation, look up tables, and regressions techniques were employed in the
REddyProc to fill the gaps. The details on the gap filling using this R package have been
described in previous studies [33,35–38]. The computed half hourly ET values were then
used to generate daily, monthly, and seasonal ET values.

2.2.2. MODIS ET Data at Different Spatial Resolutions

The commonly used MOD16 ET global data product (MOD16A2) is operationally
available at a 500 m spatial resolution [39]. The MOD16 algorithm is based on the Penman-
Monteith equation, which uses daily global meteorological reanalysis data and MODIS
observed vegetation fractional cover (Fc), leaf area index (LAI), albedo, and land cover as
primary inputs for the ET calculation. A detailed description of the MOD16 ET algorithm
and performance is presented in Mu et al. (2011). In this study, we used a field scale
implementation of MOD16 that is available at a 30 m resolution [25]. To assess how differing
spatial resolution affects model accuracy relative to EC observations, we averaged all 30 m
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pixels for each time step within 30 m (MODET30), 200 m (MODET200), 500 m (MODET500),
and 1000 m (MODET1000) diameter circles around each tower in both pastures. The key Fc
and LAI MOD16 inputs were derived from 30 m EVI record using the methodology of [25]:

Fc =
EVI − EVImin

EVImax − EVImin
(1)

where min and max represent minimum and maximum values of EVI, respectively.

2.2.3. Statistical Validation of MODIS ET Estimates with ETEC

Seasonal patterns of MODIS ET at four different spatial scales were compared with the
seasonal pattern of ETEC in both pastures. In addition, simple linear regression analyses
were conducted between each MODIS ET series (MODET30, ETMOD200, ETMOD500, and
ETMOD1000) and ETEC for each pasture site in each year to assess the ability of MODIS
satellite to predict ET as measured by the eddy flux towers at four different spatial scales.
The linear relationship was evaluated using the R2 values computed from the regressions.
In addition to R2, we also reported slope, which provides useful information about the
magnitude of bias affecting higher/lower ET estimates as compared to ETEC. Root mean
square error (RMSE) was computed using the following equation to test the goodness of fit
between ET estimates:

RMSE =

√√√√∑N
i=1

[
ET(MOD)i

− ET(EC)i

]2

N
(2)

where, ET (MOD) is the ET estimates for ETMOD16 at different spatial scales, i represents the
time step (8-day), and N is the total number of observations.

3. Results
3.1. Weather Conditions, Vegetation Growth, and ET in 2015 and 2016

We assume that both co-located pastures experienced similar weather conditions. The
daily records of rainfall, air temperature, soil water content, and the weekly photosyntheti-
cally active radiation are presented in Figure 2. Seasonal rainfall and mean temperature
compared with the 30-year average (1981–2010) are presented in Table 2. Meteorologically,
2015 and 2016 were slightly warmer than the 30-year average (1980–2010). However, with
respect to annual rainfall, 2015 was a pluvial year and 2016 was a drier year with total
annual rainfall of 1273 mm and 635 mm, respectively, compared to the 30-year mean total
annual rainfall of 871 mm. Throughout year 2015, the sites received good rainfall with a
record high monthly rainfall of 393 mm occurring in May (30-year average May rainfall
= 124 mm). Both sites showed similar trends in soil water content (SWC) fluctuations
corresponding with rainfall events (Figure 2b).

The vegetation phenology and productivity of the pastures during the growing season
are dependent on the amount and distribution of rainfall. We used the MODIS-derived
EVI as a proxy to determine the difference in phenology and productivity between two
pastures, as affected by rainfall conditions. The EVI was higher in the wet year (2015)
than it was in the dry year (2016) in both pastures. In both pastures, the maximum EVI
was observed one month earlier in 2015 (July first week) than in 2016 (end of July–first
week of August). This difference in phenology between the two years was driven by the
higher spring temperature in 2015 than in 2016 (Table 2), consistent with the findings
of [40]. The green-up of the MP pasture was earlier by about two weeks than the NP as
evidenced by the higher EVI during 2015 and 2016 (Figure 2c). This result was consistent
with the multi-year EVI average (2010–2016) (Figure S1). The in situ records of LAI and
aboveground biomass (AGB) also showed earlier green-up of MP than NP responding to
the warmer and wetter spring. For example, in 2015, LAI and AGB in MP were measured
0.62 and 78.7 g/m2, respectively, on DOY 100 whereas LAI and AGB in NP were 0.45 and
72.8 g/m2, respectively, on the same day. Observations from both study years as well
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as from the multi-year average EVI data revealed more variability in EVI values in MP
than NP during the growing seasons, reflecting greater sensitivity of MP with regard to
management and climatic factors.

Diurnal courses of ET and changes in ET rates (half hourly) for MP and NP across the
2015 and 2016 growing seasons are presented in Figure 3. Typical diurnal trends (average
for all days in a month) in both pastures across the growing seasons are compared in
Figure 4. Higher half-hourly ET rates (dark red color) were observed between 10 am and
6 pm of each day. There were large differences in ET at half-hourly and daily scales
between sites and years. The patterns of ET at the 8-day time step are presented in Figure 5.
During the growing season, daily ET (8-day average) in MP was in the range of 0.5 to
6.4 mm d−1 in 2015 and 0.6 to 5.0 mm d−1 in 2016.
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Figure 2. Seasonal dynamics of (a) air temperature, photosynthetically active radiation (PAR), (b) soil
water content, rainfall, and (c) Moderate Resolution Spectroradiometer (MODIS)-derived enhanced
vegetation index for the study sites in 2015 and 2016.

Table 2. Seasonal total rainfall and seasonal mean temperature in 2015 and 2016 as compared to the
30-year mean (1981–2010) for El Reno, OK, USA.

Winter
(Nov–Jan)

Spring
(Feb–Apr)

Summer
(May–Jul)

Fall
(Aug–Oct) Annual

Rainfall (mm)
2015 117.3 603.2 353.0 199.64 1273.3
2016 88.4 222.7 206.2 118.1 635.5

30-year 103.6 268.9 250.2 218.4 871.5
Temperature (◦C)

2015 4.88 20.01 25.19 10.46 15.09
2016 7.4 18.86 25.51 11.05 16.02

30-year 5.42 18.93 25.01 9.24 14.54
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time-stamp average value for the entire month. Bars represent standard errors of the means.
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Figure 5. Patterns of 8-day average daily evapotranspiration (ET) in managed pasture (MP) and
native pasture (NP) during the 2015 (a) and 2016 (b) growing seasons. Bars represent standard errors
of the means. The shaded region in b represents a case of 30-day grazing window in both pastures,
and the black inverted triangle in b represents the timing for hay in MP.

Daily ET for NP was in the range of 0.5 to 4.6 mm d−1 in 2015 and 0.9 to 4.8 mm d−1

in 2016. Generally, in both years, with the growth of vegetation, the ET rates started
to increase and reached a maximum during June–July before declining during the late
growing season in both pastures. However, the magnitude and timing of higher ET rates
varied between years and pasture types depending upon weather conditions and plant
growth. Good rainfall distribution in 2015 contributed to higher ET rates from mid-April
to September in NP than MP (dark red shades in Figure 3. In 2016, ET rates followed the
growth patterns of vegetation. The earlier green-up in MP showed higher ET rates in MP
during the early growing season, while this pattern was vice versa during the late growing
season. In both years, monthly sums of ET followed the pattern of EVI sums (Figure 6).
However, the magnitudes of ET were dependent on the rainfall conditions. The higher
EVI values in 2015 in NP than MP corresponded with the highest seasonal ET values of
804 mm (63% of total annual rainfall). The total growing season ET for MP in 2015 was
only 616 mm (48% of annual rainfall). The growing season ET totals in 2016 were similar
between the two pastures, with 573 mm (90% of total annual rainfall) in MP and 561 mm
(88% of total annual rainfall) in NP. However, the monthly sums of EVI and ET for these
two pastures were different. The MP had both higher EVI and ET (monthly sums) in
April–June, whereas the sums of EVI and ET in August and September were higher in NP.
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3.2. Comparison of MODIS ET (MODET30, ETMOD200, ETMOD500, and ETMOD1000) and ETEC at
the Study Sites during 2015–2016

In general, all MOD16 ET records at the four spatial scales performed well in capturing
the variability of ET, with R2 > 0.8, regardless of pasture types and rainfall conditions.
However, the ET estimation accuracies varied across different spatial scales of MOD16
ET products. The MOD16 ET at all spatial scales was underestimated compared to ETEC
irrespective of sites and years (Figure 7). However, ETMOD30 was more accurate than
ETMOD200, ETMOD500, and ETMOD1000 when compared to ETEC. More specifically, ETMOD30
had less bias and smaller RMSE than the coarser spatial resolution MOD16 ET products
(Figure 7). For both sites and years, the difference between ETEC and MOD16 ET products,
except for ETMOD30, was substantial throughout the growing season, with the largest
difference being observed in 2015 at the NP site (RMSE = 1.54 mm d−1, bias = 1.56 mm d−1).
However, the difference in ETMOD30 and ETEC during the beginning and towards the end
of growing season was minimal. The magnitude of difference between ETMOD30 and ETEC
during the middle of growing season was also smaller when compared to other MOD16
ET products of higher spatial scales irrespective of sites and years.
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Figure 7. Seasonal dynamics of 8-day average daily values of eddy covariance measured evapotran-
spiration (ECET) and MODIS ET (ETMOD30, ETMOD200, ETMOD500, and ETMOD1000) at 30, 250, 500,
and 1000 m spatial resolution in managed pasture (MP) and native pasture (NP) during the 2015 and
2016 growing seasons.

4. Discussion
4.1. Grassland Productivity, Vegetation Composition and ET in Pluvial Year

The differential response of pastures to rainfall may reflect differences in vegetation
composition between MP and NP. The type of grass and inclusion of C3 and C4 species will
influence the pasture composition that determines the annual growth cycle of the pasture.
For example, the majority of growth of cool season species occurs in the spring and early
summer, while peak production of warm season grasses occurs during summer. The MP
in our study is a C4 monoculture pasture dominated by old world bluestem whereas NP
maintains its diversity naturally with varying proportion of C3 and C4 species depending
upon weather conditions. The temperature and rainfall also determine the growth cycle, as
well as the relative abundance of C3/C4 species [41]. Consequently, vegetation phenology
(measured by EVI) was varied, and ET showed considerable variations between years
as the ratio of plant transpiration to total ET largely depends on vegetation coverage,
which increases with vegetation growth [42,43]. With different species composition, it is
expected that the two pastures would behave differently in terms of water use. In our
study, we found that the two pastures behaved differently in terms of ET magnitudes
in 2015 and 2016, which corresponded with the change in EVI. MP is supposed to have
higher productivity when water resources in the soil are not limiting. However, MP did
not harness the advantage of record rainfall in 2015 fully as compared to NP. Throughout
the growing season, the EVI in 2015 was smaller in MP than in NP. Similarly, the peak AGB
was also lower in MP (952 g m−2) than NP (1048 gm−2). The NP used the excess rainfall
of 2015 more efficiently than did MP, resulting in higher EVI and ET. The relationship of
higher vegetation growth with higher ET was also observed in the 2016 growing season,
with higher ET in MP during the early growth season when EVI was larger. Similarly,
higher ET was observed during the late growing season in NP when EVI of NP was higher
than that of MP. The EVI has been reported as a driving factor of ET by several other
studies [44–47]. One of the most distinctive features we observed is the difference of ET



Remote Sens. 2021, 13, 82 11 of 16

during high rainfall periods. Generally, C4 species use water more efficiently than C3
species under water-limited conditions, but less attention has been given to how C4 species
respond to excess water. Lower EVI in C4 pasture (MP) showed that it was less efficient in
using excess water (rainfall) than mixed species (NP), resulting lower ET in MP than NP,
which might be explained by the lower leaf area or the inability of roots to absorb available
water. Similar results of higher ET of mixed species grassland have been reported by [48],
compared to monocultures in wet years.

4.2. Management Factors and ET Differences between Two Pastures

In this study, we compared both patterns and magnitudes of ET between two differ-
ently managed pastures during contrasting wet and dry years. One of the most important
insights on the variability of ET is the management factor in MP. The combined variabil-
ity of climate, management, and plant functional type have influenced the overall ET in
MP, although this study did not attempt to disentangle the contributions separately. The
higher intensity of management activities such as burning and grazing and different plant
functional types might have contributed to the alteration of growth phenology such as
earlier green-up and earlier senescence in MP than NP, resulting in different half hourly ET
rates and magnitudes at respective time periods between the two pasture types. In 2014,
MP was burned and hayed whereas NP did not receive any treatment. During 2015–2016,
the grazing intensity between the two pastures was different and MP was hayed in mid-
August in 2015 (Table 3). There are contrasting observations on the impacts of grazing
on ET in pastures. The total ET can be either reduced [13,49–51] or enhanced [52–54] by
cattle grazing. A few studies have also reported no change in ET due to grazing [55,56].
In our study, we found decreased ET after grazing in both pastures because grazing can
change the biophysical properties of the canopy through decrease in canopy density affect-
ing the transpiration contribution to total ET. For example, ET decreased by ~1 mm d−1

(managed = 1.28, native = 0.97) during the grazing period which was recovered after one
week of grazing (Table 3, Figure 5a,b shaded region). The recovery of the plant growth
was faster after grazing which again compensated for the decreased ET. Since MP is more
intensely grazed than NP, we observed that total ET of the MP was also impacted more
by grazing than that of NP. Another important management activity that affected total ET
of MP was hay cutting (Figure 5b, black triangle) in early August of 2016. The weekly ET
rates of about 7.7 mm d−1 were reduced to 4.6 mm d−1 following haying and then slowly
recovered after a week. After the pasture was hayed, vegetation recovery was slow, and ET
did not reach to the previous stage (before haying) (Figure 2c), resulting in lower ET in MP
than NP for the same period (Figure 4).

Table 3. Effects of management activities (grazing and haying) on evapotranspiration (ET) at native
and manage pastures.

Grazing
(06/01/2016 to 06/30/2016)

ET
(mm d−1)

Haying
(08/08/2016) ET (mm d−1)

Managed
pasture

Before grazing 7.93 Before haying 7.70
During Grazing 6.65 After haying 4.6

After grazing 8.17 1st week 5.13
2nd week

Native
pasture

Before grazing 6.09 – –
During Grazing 5.12

After grazing 7.40

4.3. Smaller Spatial Scales Provide Better ET Estimates in Grazing Pasture

The objective of paddocks grazing is to maintain the vigor and production of forage
resources for increasing cattle productivity. Overall, remote sensing techniques have been
widely used to assess the health of vegetation affected by various factors. Until recently,
operational and technical challenges have existed due to the segmentation scale (man-
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agement) and spatial scale (satellite) mismatch [57]. The widely used MODIS-derived
normalized difference vegetation index (NDVI) or EVI to describe vegetation growth is
often obtained at a resolution larger than the size of pastures, thereby capturing information
from the adjacent land [20]. However, the use of finer spatial footprint satellite observations
(e.g., Landsat-8, Sentinel-1, and Sentinel-2) allows for ET estimates that more effectively
delineate pasture zones segregated by management. For instance, the MOD16 ET estimates
at 30 m (MODET30) spatial scales, derived from the fusion of Landsat and MODIS EVI,
showed better performances than the ET estimates made at 200, 500, and 1000 m scales
(ETMOD200, ETMOD500, and ETMOD1000) when compared to ETEC (Figure 8). The RMSE and
mean biases of the ETMOD30 were generally small and corresponded strongly with ETEC.
The MOD16 ET data at coarser spatial resolutions tended to increasingly underestimate ET
in both pastures, which was consistent with previous studies reporting poor performances
of the MOD16 ET algorithm for multiple biomes [58–60]. The main reasons for the un-
derestimation are the lack of optimization of several parameters including the vegetation
characteristics representative of the study site. One of the site-specific parameters in our
study site is the heterogeneous vegetation growth resulting from cattle grazing preferences
and the rotational grazing. To capture the inherent spatial variability in ET caused by cattle
grazing and management, our results suggested that ET estimated at finer scale would be
more reliable and that has been reflected to some extent in the MODET30 estimates. The
error in flux estimation due to mismatches between coarser spatial resolution of the MOD16
operational ET product and finer spatial heterogeneity of vegetation characteristics has
been discussed previously [21,61,62]. Previous model performance evaluation of ETMOD16
showed errors due to underestimation of ET associated with uncertainties in poor retrievals
of LAI (large canopies) and high soil moisture condition [63,64]. Our results of spatial
mismatch between EC footprint and the satellite products in the grazing paddocks were
consistent with the findings of Wagle et al. (2020). They showed the improved performance
of satellite products that are comparable to EC tower footprints in heterogeneous pastures.
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Figure 8. Performance of MOD ET (MODET30, ETMOD200, ETMOD500, and ETMOD1000) data at 30, 250, 500, and 1000 m
spatial scales based on bias (slope), regression coefficients (R2), and root mean square error (RMSE) obtained from the linear
regression against ET from eddy covariance (ETEC).

5. Conclusions

Differently managed pastures showed differences in ET at half-hourly to seasonal
scales. Managed pasture (MP) showed lower ET than native pasture (NP) during a pluvial
year (2015) whereas the seasonal variation existed in ET magnitudes between two pastures
in 2016 (relatively drier year). The C3 and C4 species composition of NP showed greater
ability to utilize higher rainfall with good vegetation growth and higher ET. Management
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activities like grazing and haying affected the vegetation growth, which in turn impacted
the total ET of the pastures. The ET estimates at finer spatial sales (30 m) derived using com-
plimentary satellite information was closer to the ET values obtained from eddy covariance
measurements (ETEC). The MOD16 ET estimated at the 30 m scale still showed significant
underestimation relative to the ETEC, which might be due to the spatial variability of
vegetation growth due to grazing and management activities within the pixel. This study
reinforces the need to assess ET of pastures at finer spatial scales closer to the level of
management treatments, especially when the pastures have diverse management inputs
and heterogeneities. Results from this study showed that when native pastures undergo
different management activities for enhancing higher grass production, the water use and
loss are dependent on climate variability and the heterogeneities within management units.
Therefore, a better estimation of the water uses and loss from differently managed pasture
at finer scale would be required for establishing resilient and higher productive pasture.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/1/82/s1, Figure S1: Comparison of 8-day enhanced vegetation index (EVI) between introduced
managed pasture (MP) and native pasture (NP). Each point is a mean from 2010 to 2016 and vertical
bar represents the standard errors. Table S1: Major management activities at the managed and native
prairie pastures during the study period (2015–2016).
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