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The fifth epidemic wave of avian influenza A(H7N9) virus in 
China during 2016–2017 demonstrated a geographic range 
expansion and caused more human cases than any previ-
ous wave. The factors that may explain the recent range 
expansion and surge in incidence remain unknown. We in-
vestigated the effect of anthropogenic, poultry, and wetland 
variables on all epidemic waves. Poultry predictor variables 
became much more important in the last 2 epidemic waves 
than they were previously, supporting the assumption of 
much wider H7N9 transmission in the chicken reservoir. We 
show that the future range expansion of H7N9 to northern 
China may increase the risk of H7N9 epidemic peaks coin-
ciding in time and space with those of seasonal influenza, 
leading to a higher risk of reassortments than before, al-
though the risk is still low so far.

The third and fourth epidemic waves of avian influ-
enza A(H7N9) human infections in China showed an  

apparent reduction in incidence compared to the spring 

2013 and winter 2013–14 epidemic waves. However, dur-
ing the winter of 2016–17, the incidence rose, growing to 
levels never observed before and reaffirming concerns of 
a pandemic threat posed by the H7N9 virus (1–3). Since 
2013, more than 1,520 human cases of H7N9 virus infec-
tion have been reported, mostly located in eastern China, 
with a case-fatality rate ranging from 30% to 40% (4–6).

The H7N9 virus that caused the first epidemic wave in 
March 2013 originated from multiple reassortment events 
of avian influenza viruses from domestic poultry and wild 
birds (7). Mainly restricted to the Yangtze River Delta in 
eastern China, including urban areas of Shanghai, Jiangsu, 
and Zhejiang Provinces, in the first wave, the spatial range 
of H7N9 human cases increased during the second wave 
along the coast into Guangdong Province in southern China 
(8). Over time, phylogeographic inference suggested that 
H7N9 had become established in separate parts of China 
during the second and third waves, reassorting with local 
avian influenza viruses (9,10).

Humans are not a natural reservoir, but occasional 
spillover hosts of H7N9 human cases act as indicators, pre-
sumably reflecting the circulation of H7N9 in poultry (10), 
and are an effective way of studying the spatial distribu-
tion of H7N9 virus. Surveillance in poultry is difficult, as 
the virus has so far had a low pathogenicity in chickens 
(11,12), and the absence of clinical signs means that active 
and targeted sampling is needed. This difficulty has made 
the characterization of the spatial distribution of the virus 
reservoir inconclusive, although that may change in the fu-
ture because of the recent evolution of a highly pathogenic 
strain of H7N9 (13–15).

In this study, we considered 3 sets of factors that may 
influence the spatial variation in H7N9 incidence. The first 
set of spatial risk variables, termed anthropogenic variables, 
included the distribution of live-poultry markets (LPMs) 
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and human population density. Visits to LPMs are the main 
known risk factor for H7N9 human infection (16–18), and 
LPMs represent a key interface between humans and poul-
try. At a higher level, LPM networks may also support the 
spread and persistence of H7N9 virus through the network 
of LPMs and poultry farms linked by trade (19). In pre-
vious studies, we showed that a high density of LPMs in 
some specific areas could regionally increase the risk for 
H7N9 infection at the market level (20), which translates 
into higher risk at the county level, as observed in several 
studies (21–23). Human population density was included 
as a surrogate for surveillance bias and to account for any 
anthropogenic transmission mechanisms.

During the fifth wave, outbreaks in poultry farms 
started to be reported in higher numbers, so we included a 
second set of predictor variables, termed poultry, including 
the density of chickens and ducks, as these may regionally 
influence the risk of H7N9 virus transmission to humans. 
From 69% to 80% of H7N9 human patients in the 5 epi-
demic waves reported exposure to live poultry before in-
fection, including LPM (52%–60%) and backyard poultry 
(13%–40%); these figures remained fairly stable with time 
(1). Although most of those exposures may correspond to 
LPM visits, other opportunities for contact with poultry 
along the production and value chain also exist. For exam-
ple, poultry workers in Beijing were shown to be at a higher 
risk for H7N9 infection than the remaining population of 
the city (24). Poultry may become a reservoir when the 
circulation of avian influenza viruses through the produc-
tion and value chains cannot be prevented; poultry-related 
variables were found to be key predictors of H7N9 risk in 
several previously published studies (20,23,25,26).

In addition, to account for the distribution and abun-
dance of wild birds, we included 2 indicator variables of 
proximity to and abundance of water and wetlands. Al-
though the most conservative hypothesis remains that hu-
man infections are linked to the circulation of H7N9 in 
domestic poultry with exposure in LPMs, it cannot be as-
sumed that wild birds do not play any role in transmis-
sion. The virus precursors of the H7N9 virus in China 
were found in a wide variety of bird species, both wild and 
domestic (7); avian influenza viruses circulating in wild 
birds represent a gene pool that may recombine with H7N9 
viruses and allow better adaptation and persistence. There 
is little information on the wild host specificity of H7N9, 
and data on the distribution of wild bird species are gener-
ally coarse, with populations varying strongly according 
to the season.

We studied the spatial variation of H7N9 incidence 
in the human population during the 5 epidemic waves in 
relation to these 3 sets of spatial risk factors. More specifi-
cally, we compared the association between these spatial 
factors and H7N9 infections across the 5 epidemic waves, 

to investigate the spatial distribution of repeated recur-
rences and the year-to-year variation in predictability of 
H7N9 infections.

Materials and Methods

Data

H7N9 Human Cases and Seasonal Influenza
We analyzed all confirmed H7N9 human cases during Feb-
ruary 19, 2013–August 9, 2017. We collated information 
on laboratory-confirmed H7N9 human cases by collecting 
data from the World Health Organization (WHO) Monthly 
Risk Assessment Summary report, websites of the national 
and provincial Health and Family Planning Commission 
of China, FluTrackers (http://flutrackers.com), HealthMap 
(http://www.healthmap.org/en/), and avian influenza re-
ports from the Centre of Health Protection of Hong Kong. 
When information was inconsistent, we used the WHO re-
port as the primary source. A detailed description of case 
definitions, surveillance for identification of cases, and 
laboratory testing for H7N9 virus have been provided else-
where (4,27,28). For each case, the information about place 
of residence and date of onset of symptoms was used and 
6.5 days were subtracted from the date of onset of symp-
toms to estimate the dates of first contact with the virus, as 
estimated elsewhere (29). To compare the seasonality of 
H7N9 human cases with that of human seasonal influenza 
A in space and time, we extracted influenza sentinel sur-
veillance data for January 2013–March 2017 from Influen-
za Weekly Reports, managed by the Chinese National In-
fluenza Centre (http://www.chinaivdc.cn/cnic/zyzx/lgzb/). 
More information on the sentinel network supporting these 
data can be found in Yu et al. (30).

Live Poultry Markets and Permanent Closure Measures
We assembled a database recording the locations of 8,943 
retail and wholesale LPMs from multiple sources. In addi-
tion, we compiled a database recording the market closure 
measures implemented since the first wave, with the start 
and end date of each measure. Both databases are described 
in the online Technical Appendix (https://wwwnc.cdc.gov/
EID/article/24/1/17-1393-Techapp1.pdf).

Spatial Predictor Variables
The first set of predictor variables included the LPM den-
sity (LPM/km2) and human population density (persons/
km2). Some counties do not have LPMs but their inhab-
itants may easily go to LPMs in neighboring counties. 
LPMs may also act at a higher level by providing a net-
work of markets through which the disease could spread 
and persist. The LPM density was computed by means of 
a Gaussian smoothing kernel function with the optimal  
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bandwidth found by Gilbert et al. (20). To account for clo-
sure of LPMs, the data on permanent market closures were 
used to remove the permanently closed markets from the 
full LPM database before the Gaussian smoothing, result-
ing in a different LPM density distribution for each epi-
demic wave. Human population density was taken from the 
2010 census (http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/
indexch.htm).

The second set of predictor variables included chick-
en and domestic duck densities from a new dataset we 
produced using the Gridded Livestock of the World meth-
odology applied to an extensively improved dataset we 
compiled using the 2010 reference year (31,32). Because 
a high correlation was noted between duck and chicken 
densities at the county level, and to reduce colinearity and 
to facilitate the interpretation of the results, we combined 
these variables to give a poultry density layer (chickens + 
ducks/km2) and the chicken-to-duck ratio (chicken den-
sity/duck density).

The last set of predictor variables was indicative of 
water bird habitat. This included the distance to the largest 
lakes and reservoirs (km), measuring the distance between 
the county centroids and the nearest lakes (area ≥50 km2) or 
reservoirs (storage capacity ≥0.5 km3) (33), and the propor-
tion (%) of the county covered by wetlands, according to 
the hybrid wetland map for China (34).

Analyses
The analyses involved the development of Poisson boosted 
regression tree (BRT) models to predict the daily incidence 
rate of H7N9 virus in the human population as a function 
of 6 predictor variables. (A description of the BRT models 
and a list of model parameters is provided in the online 
Technical Appendix.) The models were developed using 
the number of human cases as the dependent variable, with 
an offset term corresponding to the product of human popu-
lation by the duration of the epidemic. The duration of each 
epidemic was defined as the period separating the 5th from 
the 95th percentile of the days of onset of illness in each 
wave. One model per epidemic wave was built to compare 

the effect of predictor variables and to assess the predic-
tive capacity from one wave to another. The contribution 
of each predictor variable to the model was quantified by 
its relative contribution (RC), a measure of its overall im-
portance in the model (35), and by its partial dependence 
plots, or BRT profiles, which provide a graphical descrip-
tion of its effect on the daily incidence rate after accounting 
for the average effects of all other predictor variables in the 
model (36). We tested the presence of spatial autocorrela-
tion in the model residuals using spline correlograms (37) 
and we used the approach of Crase et al. (38) when auto-
correlation was present in the model residuals. To evalu-
ate the models for their capacity to discriminate between 
the presence and the absence of human cases at the county 
level, we converted the predicted daily incidence rate into 
a probability of having >1 human case in the county us-
ing a binomial model. Finally, we replicated the analysis 
with generalized linear models because BRT models do 
not explicitly allow the formal testing of the significance 
of individual risk factors.

Results
Table 1 presents the RC of the predictor variable in the 
different epidemic waves. The RCs of anthropogenic pre-
dictor variables were high initially but decreased strongly 
after the third epidemic wave (w1 = 41.66%; w2 = 50.99%; 
w3 = 39.93%; w4 = 17.31%; w5 = 21.52%). In parallel, the 
RC of poultry predictor variables increased and was great-
est in the last epidemic wave (w1 = 10.39%; w2 = 5.57%; 
w3 = 2.12%; w4 = 28.53%; w5 = 36.37%). In this last epi-
demic wave, the most noteworthy predictor variables were, 
in decreasing order of RC values, the chicken-to-duck ratio 
(20.49%), the LPM density (18.41%), the poultry density 
(15.88%), and the distance to open lakes and reservoirs 
(7.31%). Figure 1 presents the BRT profiles of these 4 pre-
dictor variables in the different epidemic waves (the other 
profiles are provided in online Technical Appendix Figure 
1). The chicken-to-duck ratio had a notable RC only in 
waves 4 and 5, when it showed a positive association with 
incidence up to a ratio of ≈30. The LPM density profile 

 
Table 1. Relative contribution of the different Poisson BRT models across 5 epidemic waves of influenza A(H7N9), China* 

Model 
Relative contribution ± SD, % 

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 
Anthropogenic† 41.66 50.99 39.93 17.31 21.52 

LPM density 39.81 ± 0.24 50.43 ± 0.42 12.22 ± 0.78 13.24 ± 0.78 18.91 ± 0.12 
Human population density 1.85 ± 0.14 0.56 ± 0.03 27.71 ± 0.49 4.07 ± 0.22 2.61 ± 0.04 

Poultry† 10.39 5.57 2.12 28.53 36.37 
Chicken-to-duck ratio 5.33 ± 0.18 4.18 ± 0.06 0.54 ± 0.06 20.23 ± 0.3 20.49 ± 0.18 
Poultry density 5.06 ± 0.14 1.39 ± 0.04 1.58 ± 0.13 8.3 ± 0.36 15.88 ± 0.08 

Water habitat† 2.18 3.6 9.29 5.68 8.48 
Proportion of wetlands 0.49 ± 0.02 1.13 ± 0.06 1.51 ± 0.1 0.74 ± 0.07 1.17 ± 0.03 
Distance to lakes 1.69 ± 0.05 2.47 ± 0.11 7.78 ± 0.23 4.94 ± 0.19 7.31 ± 0.1 

Autoregressive term 45.77 ± 0.27 39.84 ± 0.32 48.65 ± 0.65 48.49 ± 1.33 33.62 ± 0.17 
*BRT, boosted regression tree; LPM, live poultry market. 
†Sum of relative contribution for both categories. 

 



of wave 5 also showed a positive association, leveling off 
at a density of 0.01, showing a profile that was relatively 
similar to those of the other epidemic waves. Wave 5, in 
contrast to previous epidemic waves, tended to associate 
lower incidence with the highest LPM densities (>0.03). 
The poultry density profile changed gradually over time, 
with an increasing RC, and the incidence rate in wave 5 is 
predicted to increase strongly in counties with a high den-
sity of poultry (>60,000 birds/km2). Finally, the profile of 
the distance to lakes showed a decreasing association in the 
range 0–100 km.

The assessment of the BRT models’ goodness of fit is 
presented in Table 2. With the exception of the fourth epi-
demic wave, the predictability of the models was moderate, 
with cross-validation correlation coefficients ranging from 

0.42 to 0.55. For the presence/absence term, the models 
had a good discriminatory capacity, with areas under the 
curve (AUCs) ranging from 0.77 to 0.92, but this capacity 
decreased over the years (w1 = 0.92; w2 = 0.85; w3 = 0.83; 
w4  =  0.86; w5  =  0.77). This finding implies that it was 
easier to predict the presence or absence of a human case 
(good discrimination capacity and AUC values) than it was 
to predict the number of cases (moderate predictability and 
correlation coefficients). The discriminatory capacity was 
maintained from wave to wave, with a lower overall AUC 
in wave 5 (Table 3). The results obtained with the same risk 
factors and dependent variable from the generalized linear  
models (online Technical Appendix) show a similar pat-
tern, with poultry variables becoming more apparent after 
the fourth epidemic wave.

Figure 1. Marginal effect plots 
of the top 4 predictor variables 
on the predicted incidence rate 
of influenza A(H7N9) in China. 
Change in relative contribution 
over time is indicated by 
the bars on the top of each 
plot, showing the increasing 
relative contribution of the 
poultry predictor variables. The 
smoothed line on the top left part 
of each plot is indicative of the 
distribution of each variable.

 
 
Table 2. Goodness-of-fit metrics of the Poisson BRT models across 5 epidemic waves of influenza A(H7N9), China* 

Wave 
Pearson correlation coefficient ± SD 

 
AUC ± SD 

Training Training, auto Cross-validation Training Training, auto 
1 0.793 ± 0.011 0.553 ± 0.002 0.487 ± 0.014  0.924 ± 0.001 0.907 ± 0.001 
2 0.749 ± 0.004 0.345 ± 0.008 0.55 ± 0.014  0.849 ± 0.001 0.848 ± 0 
3 0.588 ± 0.01 0.496 ± 0.003 0.424 ± 0.013  0.833 ± 0.002 0.811 ± 0.001 
4 0.423 ± 0.005 0.292 ± 0.007 0.258 ± 0.009  0.855 ± 0.001 0.833 ± 0.001 
5 0.586 ± 0.001 0.539 ± 0.001 0.446 ± 0.009  0.773 ± 0 0.75 ± 0 
*AUC, area under the curve; BRT, boosted regression tree. 
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Figure 2 shows the distribution of the top 3 predic-
tor variables (LPM density, poultry density, and chicken-
to-duck ratio) in relation to the distribution of the human 
cases, distinguishing those from epidemic waves. The 
RGB (red/green/blue) composite plot (Figure 2, panel A) 
highlights areas in which all 3 predictor variables were 
high and where H7N9 persisted over time (Figure 2, panel 
B). A large area to the east of Taihu Lake on the urban 
areas of Wuxi, Suzhou, and Shanghai had high LPM den-
sities and included several small hotspots of high poultry 
density. The RGB composite plot shows 3 additional ar-
eas with high LPM densities and high poultry densities: 
Guangdong Province, the Tianjin and Beijing urban areas; 
and the Chongqing urban area. These areas visually corre-
spond to areas of high H7N9 recurrence in Figure 2, panel 
B, which contrasts counties with repeated recurrences from 
those with sporadic infections. Figure 2, panel C illustrates 
that the spatial pattern of wave 5 showed a marked geo-
graphic expansion from these previous hotspots of persis-
tence, with 279 counties reporting H7N9 for the first time 

(66.11% of the total number of counties infected in wave 
5). It is also apparent why LPM density was a less power-
ful predictor variable in wave 5 than in previous waves, as 
these newly infected counties no longer correspond to the 
green areas depicted in Figure 2, panel A. The heat maps 
shown in Figure 3 show that the majority of H7N9 human 
cases occurred around February and March (Figure 3, panel 
B), with a latitudinal gradient. The seasonality of common 
influenza A infection is different throughout China (Figure 
3, panel C), with the provinces north of 34.1 degrees show-
ing a much stronger annual winter seasonality of infection 
than do the more southerly provinces, where most cases 
occur during December–February. A comparison of Fig-
ure 3, panels B and C, shows that the peaks of H7N9 and 
seasonal influenza A have so far not coincided strongly in 
space and time. However, a geographic range expansion of 
H7N9 infections into the northern provinces, retaining the 
current seasonality, would bring the H7N9 and seasonal in-
fluenza A incidence peaks toward each other in both space 
and time.

Discussion
The results of our spatial models demonstrate a major 
shift over time from anthropogenic toward poultry pre-
dictor variables linked to H7N9 human cases, apparent 
in wave 4 and confirmed in wave 5. This shift was evi-
dent in both BRT and generalized linear  models. More 
specifically, the predictive power of poultry variables in-
creased over time and was greatest in the last epidemic, 
pointing to areas with high chicken densities and high 

 
Table 3. Cross-predictability of the BRT models trained with 
the different epidemic waves of influenza A(H7N9), China, 
applied to the others, as measured by the area under the curve* 

Predictions 
Applied to 

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 
Wave 1 0.91 0.81 0.78 0.84 0.79 
Wave 2 NA 0.85 0.78 0.83 0.76 
Wave 3 NA NA 0.82 0.82 0.74 
Wave 4 NA NA NA 0.83 0.75 
Wave 5 NA NA NA NA 0.76 
*BRT, boosted regression tree; NA, not applicable. 

 

Figure 2. Distribution of predictor variables and influenza A(H7N9) infections in China, with 3 geographic extents: smallest extent 
around the location of human cases (top), Guangdong Province (bottom left), and Yangtze River Delta (bottom right). A) Visualization of 
poultry density (red), live-poultry market density (green), and chicken-to-duck ratio (blue). Dark areas correspond to low values and light 
areas to high values in all 3 predictors. B) Number of years with >1 human case per county. C) Distribution of the fifth wave of human 
infections compared with previous waves.



chicken-to-duck ratios. A recent study on H7N9 human 
cases showed an increase in periurban and rural cases 
in the fifth wave and a comparatively higher number of 
cases among middle-aged persons (1). However, apart 
from the overall increase in cases, the study did not sug-
gest any other major epidemiologic differences, and oth-
er authors have made similar observations when com-
paring waves 1–4 (1,5,8). Our results do not contradict 
the observation of a higher number of human cases in 
periurban and rural areas, because high poultry produc-
tion regions are typically located in periurban and rural 
settings, but they strongly support the hypothesis that 
the H7N9 virus may have spread in the chicken reservoir 
much more extensively during the last 2 epidemic waves 
than was previously the case, with a particularly marked 
geographic range expansion in the last epidemic wave. 
This observation, based on human cases, can be linked to 
the emergence of HPAI H7N9 that was reported early in  
2017 in southern China (13). Recently published results 
showed that human cases of HPAI H7N9 were already 
found beyond Guangdong, in Hunan and Guangxi Prov-
inces in early 2017 (15). In parallel, a comparatively 
higher number of reports of H7N9-positive samples was 
found in chicken farms this year in comparison with pre-
vious epidemic waves, including reports of HPAI H7N9 

in northern China, in Tianjin (39). The precise role of the 
gain in pathogenicity on the range expansion of H7N9 
remains unclear, as do the main mechanisms of trans-
mission along the poultry production and value chain 
networks. However, the fact that such a range expansion 
took place in parallel with the emergence of a highly 
pathogenic variant seems unlikely to be coincidental.

It should be noted that the measure of predictor 
weights in the model, the RC, is relative, so that the sum 
of RCs equals 1. If, therefore, the poultry variables become 
better predictors of H7N9 incidence in humans, the RC of 
other variables must decrease, even if their effect on the 
predicted incidence remains fairly constant. The contribu-
tion of LPMs may have remained high, but its combination 
with increasing transmission along the poultry production 
and value chains may be responsible for the geographic 
range expansion and higher incidence observed during the 
fifth wave.

Although some of the highest incidences of H7N9 
were observed along Taihu Lake, the predictive capacity 
of variables associated with water birds had a much lower 
influence in the models than did the anthropogenic and 
poultry variables. Many interfaces combining wetlands, in-
tensive poultry farming, and rice paddy fields are present in 
southeastern China and may have played a role in the initial 

Figure 3. Seasonality of influenza A(H7N9) infections in comparison to seasonal influenza, by week, China, 2013–2017. A) Epidemic 
curve for H7N9. B) Seasonality for H7N9. C) Seasonality for seasonal influenza A.
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emergence of the H7N9 virus in the Shanghai area (40). As 
the virus spread in the following epidemic wave, however, 
the contribution of wild birds to overall disease circulation 
may be fairly low, which is reflected by the low relative 
contribution of the water bird habitat proxy variables.

The predictive capacity of the incidence models was 
only moderate, as these spatial models did not account for 
the variability in incidence linked to market closure mea-
sures. In contrast, the predictions of presence/absence were 
generally better because presence cannot be influenced by 
market closure measures; such measures usually followed 
human cases rather than preceded them, and few counties 
implemented market closure measures in the absence of 
human cases.

This moderate predictive capacity may also relate to 
some limitations of the study. There may be an underre-
porting of milder symptomatic infections (30), and the ef-
fect and geographic distribution of this bias is unknown. 
Another aspect is that the poultry dataset underlying our 
analyses is of uneven quality, with better and more de-
tailed data in the east than in western parts of the country, 
as shown by Artois et al. (26). Finally, although all efforts 
were made to compile the most comprehensive LPM da-
taset possible, many LPMs may have opened and closed, 
including illegal ones, further adding to model uncertainty. 
Finally, we were not able to integrate poultry movement 
and trade data (legal or illegal) into this analysis because of 
the lack of centralized data; this may be a line of investiga-
tion for the future.

The geographic range expansion and increase in inci-
dence of human cases in the fifth wave of H7N9 brings 
serious human health concerns. First, repeated human in-
fection by avian influenza viruses increases the chances of 
virus recombination, mutation, or both, leading to human-
to-human transmission. Second, the provinces affected by 
earlier H7N9 epidemic waves do not have a strong seasonal 
influenza A peak in January and February (30) that matches 
the peak of H7N9 cases (Figure 3). However, if the H7N9 
virus continues to expand its range northward, in areas with 
a strong influenza A peak in January and February, there 
will be a higher chance of local coincidence of peaks of 
incidence between human cases of H7N9 and seasonal in-
fluenza A virus. This change may enhance the chances of 
coinfections that could lead to the emergence of reassor-
tants with the capacity to transmit easily between humans. 
Third, the extent of the geographic range of the expansion 
is not yet fully known; in the absence of new measures, 
it may spread further within China and internationally 
through poultry value chains.
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