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Abstract In the last two decades, two important avian

influenza viruses infecting humans emerged in China, the

highly pathogenic avian influenza (HPAI) H5N1 virus in

the late nineties, and the low pathogenic avian influenza

(LPAI) H7N9 virus in 2013. China is home to the largest

population of chickens (4.83 billion) and ducks (0.694

billion), representing, respectively 23.1 and 58.6% of the

2013 world stock, with a significant part of poultry sold

through live-poultry markets potentially contributing to the

spread of avian influenza viruses. Previous models have

looked at factors associated with HPAI H5N1 in poultry

and LPAI H7N9 in markets. However, these have not been

studied and compared with a consistent set of predictor

variables. Significant progress was recently made in the

collection of poultry census and live-poultry market data,

which are key potential factors in the distribution of both

diseases. Here we compiled and reprocessed a new set of

poultry census data and used these to analyse HPAI H5N1

and LPAI H7N9 distributions with boosted regression trees

models. We found a limited impact of the improved poultry

layers compared to models based on previous poultry

census data, and a positive and previously unreported

association between HPAI H5N1 outbreaks and the density

of live-poultry markets. In addition, the models fitted for

the HPAI H5N1 and LPAI H7N9 viruses predict a high risk

of disease presence for the area around Shanghai and Hong

Kong. The main difference in prediction between the two

viruses concerned the suitability of HPAI H5N1 in north-

China around the Yellow sea (outlined with Tianjin, Bei-

jing, and Shenyang city) where LPAI H7N9 has not spread

intensely.
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1 Introduction

In high-income countries, most of the intensification of

poultry production took place in the second half of the 20th

century and are not changing much anymore (FAO 2009).

Hotspots of intensive poultry production can be found in

several states of the USA and in north-western Europe

(Robinson et al. 2014), where they have been present for

decades and will probably remain so for a number of years.

In contrast, transition economies such as China or Brazil

are intensifying their animal production in response to

rising demands from more urbanized and wealthy human

populations that are increasing their per capita consump-

tion of poultry meat and eggs (Robinson and Pozzi 2011).

Therefore, both the number and geographical distribution

of poultry is changing much faster than that in high-income

economies. This has two main consequences. First, chan-

ges in densities and geographical distribution influence the

conditions of spread and evolution of infectious diseases.

Higher densities generally translate into higher contact

rates between animals, which, alongside other mechanisms,

may explain why several disease emergences were linked

to recent intensification of livestock production systems

(Jones et al. 2013). Secondly, the density of host is a key

variable in any epidemiological investigations, and studies

carried out in economies with a fast-changing agricultural

sector need to account for those changes.

China is specifically in this situation. In the last

20 years, the stock of chickens and ducks was multiplied

by a factor of 2.61 and 2.36, respectively, corresponding to

a compounded annual growth rate of 3.91 and 2.36% (FAO

2009). The country now holds by far the largest population

of chickens, and 70% of the world’s ducks. It is in this

context of intensification of poultry production and fast

environmental and land-use changes (Wei and Ye 2014)

that two major avian influenza viruses (AIVs) infecting

humans emerged in the country. In 1996, the highly

pathogenic avian influenza virus (HPAIV) H5N1 was first

reported in southern China (Li et al. 2004) and for several

years was only found in that country. In 2003–2004, it

started to spread to other countries and reached a maximum

geographical range in 2006, when a cumulative number of

over 60 countries had reported the presence of the virus

across Asia, Europe and Africa (Hogerwerf et al. 2010). In

2013, new infections caused by a low pathogenic avian

influenza virus (LPAIV) H7N9 were notified in humans,

and the infections were traced back to live-poultry markets

(Cowling et al. 2013; Yu et al. 2013). The H5N1 and H7N9

viruses had very different pathogenicities in poultry and

both showed the capacity to infect humans, though with

somewhat different epidemiological characteristics

(Cowling et al. 2013; Qin et al. 2015).

Surprisingly, although chicken and duck are so critical

as potential driver of disease emergence or as separate

epidemiological variables in risk-factor analyses, separate

statistics on their distribution are not routinely produced

with a high spatial level of details in China and there exists

a great degree of heterogeneity in reporting and aggrega-

tion of census data (Prosser et al. 2011). Data are collected

at a fine level (typically counties) through censuses or

surveys, but when these data become centralized at the

prefecture (administrative level 2) or province level (ad-

ministrative level 3), details are lost, either because of

spatial aggregation (e.g. provincial yearbook only reporting

prefecture-level aggregated data, or national yearbook only

reporting province-level data), or because of thematic

aggregation with chicken and ducks being pooled together

in a ‘‘poultry’’ category. So, many country-level data are

currently not centralized in a high-resolution spatial data-

base, although they may be collected on the ground and

both the spatial and temporal resolution of database can be

a limiting factor for epidemiological investigation in a fast-

changing sector.

Previous investigations strongly demonstrated the need

to separate domestic waterfowls (ducks and geese) from

gallinaceous poultry as their association with HPAI H5N1

virus presence was consistently found to differ in several

Asian countries (Gilbert et al. 2006, 2008; Gilbert and

Pfeiffer 2012). In addition, different types of production

systems, such as extensive backyard production on the one

hand and more commercial modes of production on the

other, may also have different types of influence on

transmission risk. Recent work on HPAI H5N1 and on

LPAI H7N9 found different patterns of association

between extensively and intensively raised ducks and

chickens in Thailand (Van Boeckel et al. 2012) and China

(Gilbert et al. 2014). So, there is a strong need for ana-

lysing both HPAI H5N1 and LPAI H7N9 data in relation to

detailed and up to date separate, duck and chicken data, in

addition to making a distinction between extensive and

intensive production systems.

Several studies have previously investigated the spatial

distributions in China of both HPAI H5N1 (Li et al. 2015b;

Martin et al. 2011a; Fang et al. 2008) and LPAI H7N9

(Gilbert et al. 2014; Fang et al. 2013). In a recent study, the

spatial distribution of human infections with HPAI H5N1

and H7N9 was studied and compared, which yielded

insights on the areas of co-circulation and potential infec-

tions (Li et al. 2015c), and in another study with a strong

emphasis on climatic factors (Li et al. 2015a). However,

due to the limited poultry data availability highlighted
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above, few of these studies made a distinction between

extensive and intensive systems, and several included a

general ‘‘poultry’’ category that does not differentiates

chicken from ducks.

In this paper, we aimed to revisit and update previous

HPAI H5N1 and LPAI H7N9 suitability models using a

novel and improved set of poultry data in China separating

chicken and ducks and different production systems with

state-of-the-art recent downscaling methodology (Nicolas

et al. 2016). In addition, we also tested live poultry market

density as predictor of HPAI H5N1 outbreaks distribution,

which was not done in previous studies due to the lack of

available census data at the time of previous studies. So,

the specific objectives were to compare the result obtained

with the updated poultry data sets, to test the effect of live-

poultry market density on HPAI H5N1 distribution, and to

compare the geographical distribution of high HPAI H5N1

and LPAI H7N9 suitability within China.

2 Materials and methods

2.1 Poultry statistics

Census data on chicken and duck numbers at the end of the

calendar year 2011 and 2012, and the numbers of indi-

viduals sold per year were obtained from three sources:

(a) published yearbooks, such as the China Animal Hus-

bandry Yearbook, Statistic Yearbook of China or provin-

cial yearbooks (e.g. http://data.stats.gov.cn/); (b) the

official website of the Ministry of Agriculture of China

(http://english.agri.gov.cn/) and the Agricultural Bureaus at

province and prefecture level; (c) contact with provincial

Bureaus of Animal Husbandry, provincial Departments of

Commerce, Statistics Bureaus and Chinese Agricultural

Universities to obtain any data not available from sources

(a) or (b). These data were mostly available at the pre-

fecture level (administrative level 2) but not consistently

for all prefectures and provinces. For example, a prefecture

could have a certain value in the 2011 data set, but not in

the 2012 one. For a few provinces, namely Anhui, Jiangsu

and Zhejiang in Eastern China, we were also able to find

county-level data for the year 2010.

Despite the exploration of the available above data

sources, we were not able to find 2010, 2011 or 2012 data

for all provinces and prefectures. In a previous study,

Prosser et al. (2011) already created a composite poultry

dataset for chicken, duck and geese, based on census

statistics from 2003 and 2005, and this composite data set

remains to date the basis of the poultry data for China in

the Gridded Livestock of the World (GLW) database. The

term ‘composite’ refers to the fact that they already had to

combine data from different spatial scale: province,

prefecture and counties. Therefore, we combined our

recent data set with the one from Prosser et al. (2011) in

case of complete absence of information in the concerned

area. Namely, for each of the counties in China, we

checked different available data sources and used the

density data from the source with the following order of

priority: (i) a 2010 value from the county-level data set

(available only in Anhui, Jiangsu and Zhejiang), (ii) a 2011

or 2012 value from the prefecture-level data set, and (iii) a

value from the Prosser et al. (Prosser et al. 2011) data set.

In addition, when an administrative level 2 (prefecture)

count was available in 2011 or 2012 in an area that had

administrative level 3 (counties) data in the Prosser et al.

(Prosser et al. 2011) data set, we used the county-level data

corrected to match the 2011 or 2012 prefecture counts by

multiplying them by a single scalar. In order to account for

differences in reference years, we applied national-level

growth correction factors from FAOSTAT (FAO 2009) to

account for the differences in years, with 2010 as pivot

year. A similar approach was used for both chicken and

ducks. Due to a lack of data for geese, we did not consider

that species in further processing.

2.2 Poultry downscaling

In order to avail the poultry data at the same spatial reso-

lution as other risk factors, we used the downscaling

methodology of the Gridded Livestock of the World

(GLW), which was fully described in Robinson et al.

(Robinson et al. 2014) and Nicolas et al. (Nicolas et al.

2016). This method relies on models being built based on

the census counts and a set of covariates, and typically

models species at the continental level (Robinson et al.

2014; Nicolas et al. 2016). Therefore, models can be

trained using the data outside a specific country. In order to

benefit from training chicken and duck data in countries

near China, we extracted polygons with chicken and duck

census counts from the GLW within an arbitrarily 500 km

buffer from China’s border, to benefit from good quality

input data from areas with similar agro-ecological condi-

tions. The GLW methodology is only briefly summarized

here. First, the density of animals per km2 of suitable land

is estimated in all polygons corresponding to the sub-na-

tional poultry census data and transformed to its logarith-

mic value (base 10). Second, a large set of sample points is

built to cover the modelling extent, and values for the

observed densities and predictor variables were extracted

from their respective polygons (census data) or pixels

(predictor variables). Third, the sample file was divided

into n sub-samples for bootstrapping the analysis, and each

sub-sample file was divided in two parts, one for building

the model with 70% of the polygons, and one for evalu-

ating the model goodness of fit with 30% of the polygons.
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Fourth, each sub-sample was used to build a Random

Forest model and the model was applied to the raster

imagery to obtain a single predicted value for each pixel.

Fifth, the predicted values were averaged over the n boot-

straps. Finally, post-processing was carried out to correct

pixels values by multiplying all pixels of a particular

census polygon by a constant so that the sum of the grid

cell values within the polygon was equal to the observed

totals in the input subnational census data. Finally, the

pixel values were also corrected so that the national total

matches the FAOSTAT official total for a specified base

year, in this case 2010. The spatial covariates used to make

the predictions include Fourier-transformed remotely

sensed variables (the normalized difference vegetation

index and enhanced vegetation index, the day and night

land surface temperature and the band 3 shortwave infrared

band), eco-climatic variables (length of growing period and

annual precipitation), topographic variables (elevation and

slope) and anthropogenic variables (human population

density and travel time to major cities). We used exactly

the same set of predictor variables as described in Robin-

son et al. (Robinson et al. 2014) and Nicolas et al. (Nicolas

et al. 2016), with the exception of the human population

density, where the recent 2010 human population data

published for China by the Worldpop project was used

(Gaughan et al. 2016). The chicken density layer was

finally broken down between extensively and intensively

raised chickens, following the methodology outlined in

Gilbert et al. (Gilbert et al. 2015).

2.3 Avian influenza data

For the HPAI H5N1 models, we used the outbreak loca-

tions from the epidemiological dataset described in Martin

et al. (Martin et al. 2011a), complemented by outbreak

locations extracted from the FAO Empres-i data base,

including 76 recent records (from 2009 to 2016) of HPAI

H5N1 infection in domestic poultry (Claes et al. 2014).

Boosted regression trees (BRT) models require data on

both presence and absence and pseudo-absences were

generated throughout the country in locations: (1) where

there was no evidence of previous HPAI H5N1 presence;

(2) at a minimum distance of 0.0833 decimal degree of any

positive (which correspond to the spatial resolution of the

poultry density layer); and (3) in a location where human

and poultry density was higher than five person or bird per

km2 to exclude desert, unpopulated areas and areas with

potentially very low surveillance from the analysis. There

is no consensus on the optimal number of pseudo-absences

to be used in niche modelling methods (Barbet-Massin

et al. 2012). This number depends of the species under

consideration, type of model used and the spatial extent of

data. Pseudo-absences were generated in much greater

numbers than HPAI outbreaks (eight times more negatives

than positives) to capture enough variability in data and

optimizing the model performance.

For the LPAI H7N9 models, we used the set of positive

and negative markets described in Gilbert et al. (Gilbert

et al. 2014), complemented by H7N9 presence location

recorded by China CDC up to 01/10/2015 (first three epi-

demic waves). As the epidemiological unit is the market

and the data set included absence points (markets where

H7N9 was never recorded), there was no need to distribute

pseudo-absences. The spatial locations of markets descri-

bed above was used to create a layer of market density

(market/km2) on a grid of 0.0833 decimal degree of

resolution.

2.4 Avian influenza suitability modelling

Boosted regression tree (BRT) models were used to model

the probability of presence of HPAI H5N1 outbreaks at the

pixel level and probability of LPAI H7N9 infection at mar-

kets level (Elith et al. 2008). Themethod is increasingly used

in suitability modelling of infectious (Gilbert et al. 2014;

Pigott et al. 2014) and vector-borne diseases (Bhatt et al.

2013) for its capacity to model interactions between vari-

ables as well as non-linear relationships between the out-

come and predictor variables. Each model was evaluated

with an eightfolds cross-validation procedure and the area

under the receiver operating characteristic curve used as a

measurement of the discriminatory capacity ofmodels (Elith

et al. 2008). The data set is split in 8 sub-data and a single sub-

data is retained as the validation data and the remaining 7

sub-data are used as training data. The cross-validation is

then repeated 8 times for each BRT model. Finally, in order

to account for sources of uncertainty in the model (on the

localisation of pseudo-absences and the data splitting of

cross-validation), the analysis was bootstrapped with 15

independent BRT run for a total of 120 cross-validations (15

runs 9 eightfolds).

In order to ensure comparability with the previously

published results, we used a similar set of predictor vari-

ables as in Martin et al. (Martin et al. 2011a) and Gilbert

et al. (Gilbert et al. 2014), including the chicken and duck

density data layers produced by the processing detailed in

the previous section, the market density layer (Gilbert et al.

2014), human population density from the Worldpop pro-

ject (www.worldpop.org) (Gaughan et al. 2016), the pro-

portion of land covered by water and the proportion of land

covered by rice cropping from the GlobCover database

(Bicheron et al. 2008) and the cropping intensity estab-

lished through remote sensing (Xiao et al. 2005, 2006). So,

the final set of predictor variables included: extensively

raised chicken density (ChExtDn, heads/km2), intensively

raised chicken density (ChIntDn, heads/km2), duck density
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(heads/km2), live-poultry market density (MktDn, markets/

km2), human population density (HpopDn, people/km2),

the cropping intensity (CropInt, crop cycles/year), the

proportion of area covered by rice paddy fields (RiceCov,

%) and the proportion of area covered by permanent water

(WatCov, %). Since a market’s epidemiological situation

reflects the potential circulation of viruses in its catchment

areas, a spatial filter was applied to each predictor variable,

following the procedure outlined in Gilbert et al. (Gilbert

et al. 2014). In this step, the covariate values were

smoothed with weights determined by a Gaussian kernel

and the parameter r representing, the size of the catchment

area. A range of values for the parameter r was tested in

Gilbert et al. (Gilbert et al. 2014) and the same figure was

used in this study (r = 0.7). In addition, Gilbert et al.

(2014) used modelled live-poultry market densities as

predictor variables in their model, so that they could

extrapolate their model to the rest of Asia. For the sake of

comparability, we used the same layer, but the raw

observed number of live-poultry market by pixel was also

tested to evaluate the potential effect of the modelling

procedure.

3 Results

The new poultry distribution is displayed in Fig. 1, show-

ing generally much higher densities of chicken over ducks,

along with the final level at which input census data was

available. The distribution of ducks in China largely fol-

lows that of chickens, with some of the highest densities

observed in the northeastern provinces of Shanxi, Heibei,

Shangdong, south of Beijing, and the southern provinces of

Guangxi and Guangdong. In central China, the Sichuan

province stands out as having particularly high densities

too. Figure 2 displays the density of poultry and live bird

markets with the distribution of HPAI H5N1 and LPAI

H7N9 cases. The live bird market density is high on the

east coast of China and inland, around some cities as

Chongqing and Lanzhou.

The relative influences in the BRT models of the pre-

dictor variables as well as their profiles are displayed in

Fig. 3. For HPAI H5N1 outbreaks, the variables with the

highest relative contribution (RC) were the live-poultry

market density (positive association, RC 34.5%), human

population density (positive association, RC 23.4%), and

Fig. 1 Overview of base poultry data resolution. The new data sets of

chicken (a) and duck (b) density (heads/km2—on a logarithmic scale

of base 10) are obtained by combining recent census data sets at

different spatial levels (c; level 1: province; level 2: prefecture; level

3: county). This figure was built with the R-3.3.1 software (https://

cran.r-project.org/). The graticule is composed of a 10-degree incre-

ments and the coordinate system is ‘SR-ORG:7564’
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cropping intensity (negative association, RC 17.5%). One

should note that when the raw number of live-poultry

markets is used as predictor instead of the one modeled in

Gilbert et al. (2014), both the human population density

and live-poultry market density remain the most important

factors, but their respective relative contribution is inver-

ted, i.e. human population density has the highest RC (SI 1

Fig A, B).

For LPAI H7N9 infected markets, the predictor vari-

ables with the highest relative contributions were the

poultry market density (20.2%) followed by the density of

intensively raised chicken (18.4%), the proportion of land

covered by water (14.8%) and human population density

(10.5%). Interestingly, when repeating the analysis by

breaking down LPAI H7N9 records by seasonal epidemic

waves, the relative contribution of live-poultry market

density in the LPAI H7N9 market models tended to

decrease over time, with values of 22.5, 17.7 and 11.7 for

the 2012/2013, 2013/2014 and 2014/2015 winters epidemic

waves, respectively (SI 2 Fig. A). Markets reporting LPAI

H7N9 virus infections are associated positively with the

proportion of area covered by water and the market density

as observed in the BRT profiles of Fig. 3. The opposite

trend is observed for the chicken density layers, which are

negatively associated with LPAI H7N9 presence. The

effect of using the raw number of live-poultry market per

pixel instead of the modeled one was a reduction in its RC

from 20.2 to 17.9, and it remained the top predictor in

terms of RC.

HPAI H5N1 and LPAI H7N9 suitability maps are dis-

played in Fig. 4a and b, respectively. While LPAI H7N9

remained constrained to the two hotspots of Shanghai and

Guangdong, coastal areas and a number of small and iso-

lated pockets with higher suitability in and around inland

cities, HPAI H5N1 probability of presence was found to be

distributed over more widespread zones in inland China,

with much higher probabilities of presence in large rural

areas. Both models had comparable goodness of fit mea-

surements, with AUC values of 0.885 ± 0.039 and

0.850 ± 0.024 for the HPAI H5N1 and LPAI H7N9

models respectively.

4 Discussion

Overall, the changes due to the effect of the improved

poultry variables were relatively limited, and provided

several results consistent with the previous analyses

(Martin et al. 2011a; Gilbert et al. 2014). For HPAI H5N1

outbreaks, this involved a predominance of anthropogenic

factors (human population density or live poultry market

density) with a relatively limited influence of poultry

variables. One can note, however, a slight increase in the

marginal effect linked to the highest duck densities ([300

ducks/km2; *2.48 on a logarithmic scale) and a decrease

linked to the highest densities of intensively raised chick-

ens ([1500 chickens/km2; *3.18 on a logarithmic scale).

For LPAI H7N9, the results are also fairly similar, and

focusing on changes in the effect of the poultry factors, we

Fig. 2 Distribution of HPAI H5N1 outbreaks (a; red cross) and LPAI
H7N9 infected markets (b; blue triangles) in China included in this

study. The density of poultry (the sum between the chicken and the

duck density) and live bird markets (smoothed) are also displayed in

the maps (a) and (b) respectively. The density of live bird markets

was smoothed with weights determined by a Gaussian kernel and the

parameter r representing the size of the catchment area (r = 0.7).

This figure was built with the R-3.3.1 software (https://cran.r-project.

org/). The graticule is composed of a 10-degree increments and the

coordinate system is ‘SR-ORG:7564’

cFig. 3 Relative contribution (bar plots) and partial dependent plot

(curves) of each predictor of the BRT models of HPAI H5N1

outbreaks (red) and LPAI H7N9 infected markets (blue). The relative

contribution of each predictor is scaled so that the sum of all predictor

variables adds to 100%, and measures the number of times a predictor

is selected for splitting the dataset over the trees. The partial

dependent plot gives a graphical description of the marginal effect of

a predictor on the predicted response. The opaque line represents the

mean marginal effect, whilst transparent lines represent each boot-

strap. On the top of each graph, the density function of the observed

distribution of predictors is displayed for one bootstrap and for the

two analyses (red HPAI H5N1; blue LPAI H7N9)
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note a slightly higher RC of duck density, with a higher

marginal effect linked to duck densities[300 ducks/km2,

and the confirmation of the negative association with

intensively and extensively raised chicken. It is in fact

quite surprising not to find a stronger association between

HPAI H5N1 outbreaks and different poultry variable, as

such association have consistently been found elsewhere. It

is hard to say if this relates to a yet unsatisfying quality of

the poultry data, differences in reporting, or whether this

may be due to a true absence of statistical association with

data adequately reflecting the situation on the ground.

One noticeable change to the HPAI H5N1 model was

the inclusion of the live-poultry market density, which was

found to be a strong predictor of HPAI H5N1 presence,

when used in its modelled (RC = 34.5%) or raw

(RC = 17.9%) form. The distribution of live-poultry

markets and human population are strongly correlated, so

their respective effects are in fact quite difficult to separate

on a purely statistical ground. However, the fact that both

appeared as strongly significant suggests that they may

exert simultaneous influences. This statistical association

fits with many recent results on live-poultry market net-

works highlighting their possible key role in HPAI H5N1

persistence. This was suggested by simulation studies

(Fournié et al. 2013) and social-network analysis of live-

poultry market networks in China (Martin et al. 2011b) and

Vietnam (Magalhães et al. 2010; Fournié et al. 2012) but

was never quantitatively demonstrated on such a large

spatial scale. One should note that this was made possible

thanks to the important effort of collecting live-poultry

market census data following the emergence of LPAI

H7N9 (Gilbert et al. 2014). Many countries where HPAI

H5N1 persisted over long periods of time have a large part

of their poultry being traded through live-poultry markets,

including China, Vietnam, Indonesia, Bangladesh or Egypt.

By contrast, Thailand, for example, which presents all risk

factors usually associated with high HPAI H5N1 risk such

as high free-grazing duck density, dense irrigated areas, co-

existing extensive and intensive poultry systems and

human population density, has very few live-poultry mar-

kets, for cultural reasons, and this may contribute to

explain the success of the country in eradicating the dis-

ease. Our results support the suggestions made recently by

several authors that focusing surveillance and control in

markets and adapting their management to include cleaning

and/or closing day might be the key to preventing HPAI

H5N1 persistence too (Fournié et al. 2011, 2013).

Interestingly, we also tentatively showed that the rela-

tive contribution of live-poultry market density to the LPAI

H7N9 market models reduced over time, and this pattern is

observed alongside an overall reduction in the number of

human cases noted in the last years. The specific objective

of this analysis was not to make a full assessment of the

model over time, which could be explored in future works.

However, they may support the hypothesis that enhanced

surveillance, control and management in markets after the

first epidemic wave may have reduced their role in disease

transmission. For example, previous papers have already

showed a clear association between the timing of market

closure and reductions in human cases (Yu et al. 2013; Wu

et al. 2014). Our live-poultry market database does not take

markets closures or opening status into account, and some

markets may have changed their management practices,

disappeared or have been closed over time. For example,

much trading of live-poultry was banned in markets in the

periphery of Beijing, but this was not accounted for in our

model, which still highlights Beijing as being a potential

local hotspot due to its high density of markets in our

dataset.

In terms of geographical distributions, the resulting

HPAI H5N1 suitability map reflects the higher contribution

of live-poultry market density by producing a much more

clustered distribution of suitability than that predicted by

Martin et al. (2011a). Our HPAI H5N1 outbreak suitability

map does not overlap so much with the recent H5N1

human infection risk map produced by Li et al. (2015c),

who highlighted high risk regions for human infections as

being mostly concentrated in southern China. This may be

partly explained by the difference in outcome: they studied

the distribution of human cases and we investigated the

distribution of outbreaks in poultry. However, this does not

entirely explain why there would be fewer human cases in

Northern China if the landscape is suitable for H5N1

infections in poultry and if outbreaks were reported there.

However recent work comparing the epidemiology of

H7N9 and H5N1 viruses suggests that the susceptibility to

HPAI H5N1 virus infections in humans could be more

limited and family-based than for H7N9 (Qin et al. 2015).

This could add an uncertainty in the link between human

cases and the underlying circulation in poultry.

HPAI H5N1 suitability showed a much more wide-

spread distribution than LPAI H7N9, which remains lar-

gely constrained to the southeastern coastal areas. There

are many live-poultry markets in inland China (including

Chengdu, Chongqing, Beijing and Shenyang cities) and

these remain at relatively lower risk compared to the

southeastern and coastal hotspot areas. When the new

H7N9 virus emerged in China, there was an anticipation of

a possible geographical expansion into other Asian coun-

tries that had many suitable areas for infection beyond

China (Gilbert et al. 2014). Yet, after more than three years

of seasonal and winter epidemic waves in humans, the

disease has not spread much within China or internation-

ally (or has not been observed). This may possibly relate to

a yet unclear reservoir of the virus. Despite very large

sampling for surveillance carried out in China, LPAI H7N9
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was only rarely found in poultry farms, and most positives

were from human cases traced back to live-poultry markets

or from sampling carried out within live-poultry markets

themselves. LPAI H7N9 virus may show some specificity

toward some particular chicken breeds, such as the yellow

chicken, that are only raised and traded in those areas of

suitability. However, this remains very speculative, and a

clear understanding of the true poultry reservoir of LPAI

H7N9 is still lacking. Another likely reason of the various

observed distributions of LPAI H7N9 and HPAI H5N1

may be related to the low or highly pathogenic nature of

the viruses which drive differences in transmission and

spread which may translate into corresponding surveillance

and intervention strategies for prevention and control.

In conclusion, this study found that improvements to the

poultry census data had limited impact on the outputs of

suitability models for HPAI H5N1 and LPAI H7N9, that a

strong and positive association between HPAI H5N1 and

live-poultry markets was quantified for the first time, and

that the distribution of both the HPAI H5N1 and LPAI

H7N9 suitability show several areas in common, in par-

ticular in the Shanghai and Guangdong areas, which are

both areas of rapid recent economic development (Yue

et al. 2014).
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