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A B S T R A C T

Spatially and temporally continuous estimation of plant photosynthetic carbon fixation (or gross primary pro-
duction, GPP) is crucial to our understanding of the global carbon cycle and the impact of climate change.
Besides spatial, seasonal and interannual variations, GPP also exhibits strong diurnal variations. Satellite re-
trieved solar-induced chlorophyll fluorescence (SIF) provides a spatially continuous, but temporally discrete
measurement of plant photosynthesis, and has the potential to be used to estimate GPP at global scale. However,
it remains unclear whether the seasonal time series of SIF snapshots taken at a fixed time of the day can be used
to infer daily total GPP variation at spatial and seasonal scales. In this study, we first used GPP estimates from
135 eddy covariance flux sites, covering a wide range of geographic locations and biome types, to investigate the
relationship between the instantaneous GPP (GPPinst) and daily GPP (GPPdaily) on the seasonal course for dif-
ferent times of the day. Latitudinal and diurnal patterns were found to correspond to variations in photo-
synthetically active radiation (PAR) and light use efficiency (LUE), respectively. We then used the Soil-Canopy
Observation Photosynthesis and Energy Balance (SCOPE) model and the FluxCom GPP product to investigate the
instantaneous and daily SIF-GPP relationships at five flux tower sites along a latitudinal gradient and at a global
scale for different biome types. The results showed that daily SIF had a stronger linear correlation with daily GPP
than instantaneous SIF at the seasonal scale, with an instantaneous to daily SIF conversion factor following the
latitudinal and seasonal pattern driven by PAR. Our study highlights the necessity to take the latitudinal and
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diurnal factors into consideration for SIF-GPP relationship analyses or for physiological phenology analyses
based on SIF.

1. Introduction

Photosynthetic carbon fixation by plants is the most influential CO2

flux connecting the atmosphere and the biosphere. Every year, ap-
proximately 120 Pg carbon is fixed by the terrestrial ecosystems
through photosynthesis, providing food and materials for human beings
while also largely driving the global carbon cycle (Beer et al., 2010).
The underlying ecophysiological mechanisms controlling this bio-
chemical process have been long studied, mostly at leaf or molecular
scale (Farquhar et al., 1980; Krause and Weis, 1991). Actual estimation
of the photosynthetic exchange flux at the ecosystem scale, also known
as gross primary productivity (GPP), only became practical in the 1990s
with the emergence of the eddy covariance (EC) technique (Baldocchi
et al., 2001). EC flux towers measure the net ecosystems exchange
(NEE) which can be further partitioned into GPP and ecosystem re-
spiration (Lasslop et al., 2010; Reichstein et al., 2005; Wohlfahrt and
Gu, 2015). These ground observations have been critical to the devel-
opment and testing of models used to simulate GPP at a larger scale, but
the performance of these models is still not satisfactory, with large
discrepancies existing among different models (Anav et al., 2015).
Using observations as a constraint can help to improve the model
performance so that models may better predict the global carbon cycle
under future climate scenarios (Luo et al., 2011; Peng et al., 2011).
However, the sensitivity of different sub-modules, parameters or input
variables are usually associated with GPP variations at different time or
spatial scales, which need to be taken into consideration when con-
ducting this model-data fusion.

Plant photosynthesis is powered by light and affected by numerous
environmental factors and plant phenology. Its variation is often
characterized by four aspects:

(1) Diurnal variation: as the solar radiation has a diurnal cycle, it di-
rectly affects the incoming energy and carbon assimilation of
plants. Other environmental or physiological variables affecting
stomatal conductance and CO2 uptake, such as air temperature,
vapor pressure deficit (VPD), or leaf water potential also show
diurnal cycles.

(2) Seasonal variation: driven by the climate (e.g., temperature, water
availability, radiation) seasonality and plant phenology, it re-
presents one of the most important components of GPP overall
variability. Most in situ and remote observations are also conducted

at this scale.
(3) Spatial variation: due to the spatial distribution of plant species,

latitudinal pattern of incoming solar radiation, topography, and
spatial variations in climate and soil properties, GPP also exhibits
strong spatial variations.

(4) Interannual variation: usually driven by climate anomalies and land
cover changes, it is one order of magnitude smaller than other types
of variations and is therefore the most challenging level for models
to simulate accurately (Verma et al., 2015).

For some methods, e.g., the eddy covariance (EC) technique, a
single site can capture ecosystem to landscape-scale diurnal, seasonal,
and interannual variations because continuous measurements occur at a
high sampling frequency (Aubinet et al., 2012). However, EC sites are
spatially dispersed and, therefore, cannot provide spatially continuous
measurements (Schimel et al., 2015). In contrast, remote sensing
technologies usually have high spatial coverage with polar orbiting
(low Earth orbiting, LEO) satellites, while the continuous temporal
sampling is generally not possible. For LEO satellite platforms, we can
only get from zero to possibly a few observations per day depending on
the swath width of the instrument and latitude (multiple observations
per day with a single instrument are only possible at high latitudes and
with a wide swath instrument, e.g. (Guanter et al., 2015)). If observing
conditions are not favorable, e.g., owing to clouds or aerosols, a valid
observation may not be present over several days (Sims et al., 2005).
For optical remote sensing that uses vegetation indices (VIs) to quantify
vegetation canopy and leaf properties that change relatively slowly,
usually over the course of weeks to months, this low sampling fre-
quency is adequate to quantify the spatial, seasonal and interannual
variations (Guan et al., 2015; Huete et al., 2006; Zhang et al., 2016b).
The diurnal variation of satellite observed VI (an indicator of vegetation
greenness) or canopy coverage is mostly caused by leaf inclination or
bidirectional reflectance (Los et al., 2005). As long as the satellite
overpass time is stable, these effects are minor and a VI measurement at
most time of the day (when the satellite and solar zenith angles are low)
may be a good proxy of the VI for that day (Chen, 1996). However, as
the sun-sensor geometry also gradually changes at seasonal scales,
seasonal dynamics of VIs should take this effect into consideration,
especially in tropical regions where backscattering and forward scat-
tering shift within a year (Bi et al., 2015; Morton et al., 2014).

Following the successful retrieval of solar-induced chlorophyll
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Fig. 1. Schematic graph showing the diurnal course of GPP or
SIF normalized by their daily maximum values. These schematic
curves are shown for different seasons. Overpass time (solar
time) of different satellites/sensors measuring SIF are also in-
dicated.
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fluorescence (SIF) signals from satellite sensors (Frankenberg et al.,
2011; Joiner et al., 2013, 2012), we have access to a new type of
spatially extensive vegetation observation, which is based on energy re-
emitted by plants rather than reflected. SIF is a small amount of energy
re-emitted during the light reaction of the photosynthesis process
(Baker, 2008; Porcar-Castell et al., 2014). Studies have shown that it is

highly correlated with the energy absorbed by chlorophyll pigments
and the photosynthetic electron transport (Zhang et al., 2014, 2016d).
Like GPP, SIF is also driven by photosynthetically active radiation
(PAR), and has a strong diurnal cycle embedded within the seasonal,
spatial, and interannual variations. Previous studies attempted to use
satellite-based SIF to estimate GPP, however, this relationship was only

(a)

(b)

(c)

Fig. 2. Seasonal variation of (a) GPPinst, GPPdaily, and (b) γGPP of different time of day from a savanna flux tower site CG-Tch. (c) The regression between GPPdaily and GPPinst from
different times of the day (TOD). R2 and the regression slope for each TOD are shown at the top left corner and will be used for cross-site statistics. Large gaps in 2007 and 2009 are
observations that did not pass the quality checks. Note that the units for GPPdaily (g C m−2 day−1) and GPPinst (μmol CO2 m−2 s−1) are different.
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tested at individual sites for cropland or broadleaf forest (Guanter et al.,
2014; Wagle et al., 2016; Yang et al., 2015). Moreover, these studies
mostly compared satellite derived instantaneous SIF with the daily GPP.
The discrepancies between the underlying different temporal scales,
i.e., instantaneous SIF observation at satellite overpass time vs. daily
integrated GPP, so far have not been fully evaluated.

Previous studies have shown that SIF and GPP are linked through
the photon partitioning after absorption by plant chlorophyll (Genty
et al., 1989). Absorbed photons undergo three different pathways (i)
entering the electron transport chain (ETC) and generate chemical en-
ergy further used for the Calvin Cycle (ϕP), (ii) being dissipated as heat
(ϕD), or (iii) being reemitted as fluorescence (ϕF). The symbol ϕ re-
presents the quantum yield for each pathway. These mechanisms can be
used to build up the link between instantaneous GPP and SIF (Damm
et al., 2010; van der Tol et al., 2014, 2009a). Many studies have in-
vestigated these relationships at the scale of sub-seconds to minutes, but
the spatial and seasonal variation of this relationship remains unclear
(Porcar-Castell et al., 2014). In addition, because SIF measurements
from satellites are usually not continuous over time, we still need to
understand the scale conversion from instantaneous to daily sums, i.e.,
whether a snapshot of photosynthetic activity at a specific time of the
day can represent the daily total carbon fixation at both spatial and
temporal (seasonal and interannual) scales. Sims et al. (2005) and Ryu
et al. (2012) showed that the midday value of GPP or ET can be a
representative of daily or 8-day value. But those studies only focused on
a limited number of sites and the MODIS overpass time (10:00–11:00
and 13:00–14:00). As the satellites from which SIF retrievals can be
made have different overpass times (Fig. 1), it is unclear how that can
affect the relationships between instantaneous SIF and daily GPP at
different locations.

This study aims to fill those gaps with both observations and
modeling approach: we used eddy flux data from 135 sites, covering a
wide range of geographical regions and biome types, the global GPP
product from FluxCom, and SIF from Global Ozone Monitoring
Experiment 2 (GOME-2) and Orbiting Carbon Observatory 2 (OCO-2),
to explore the instantaneous-daily relationship among GPP, PAR, light
use efficiency (LUE) and SIF. In particular, we focused on the following
questions which have not yet been addressed: (1) What is the re-
lationship between the daily total GPP and instantaneous GPP at dif-
ferent times of day (TOD) and different locations? (2) What is the cause
of these spatial and temporal patterns? (3) Does SIF also exhibit these
spatio-temporal patterns and how does this affect our interpretation of
the SIF-GPP relationship? Besides these three main objectives, we also
discussed how the instantaneous and daily SIF-GPP relationships affect
the retrieval of phenology using satellite based SIF data.

2. Materials and method

2.1. GPP from FLUXNET data base and preprocessing

We used eddy flux data (Baldocchi et al., 2001) from 135 sites
covering a large variety of biome types. The flux dataset was acquired
from the FLUXNET 2015 release (December 2015, http://fluxnet.
fluxdata.org/data/fluxnet2015-dataset/) (Pastorello et al., 2017). The
spatial distribution and the information about each site can be found in
Supporting Information (Fig. S1, Table S1). This dataset was processed
using a standardized protocol, which enabled us to make a cross-site
comparison (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
data-processing/) (Barr et al., 2013; Papale et al., 2006; Vuichard and
Papale, 2015). To answer the question whether the seasonal cycle of
instantaneous GPP (GPPinst) at a certain time of day can represent the
seasonal cycle of the daily GPP (GPPdaily), we used both the original
half-hourly data and the daily data. The half-hourly data were ag-
gregated into 2-hour bins from 6:00 am to 6:00 pm to represent the
GPPinst. A rigorous data quality check was applied during this ag-
gregation process: 1) Only the half-hourly and daily data in the weeks

with more than 75% of valid (not gap-filled) radiation and net eco-
system exchange (NEE) observations were used. 2) To reduce the un-
certainty related to the NEE partitioning, we compared the daily total
GPP estimates from both the daytime method (light response curve;
Lasslop et al., 2010) and the nighttime method (nighttime NEE as re-
spiration; Reichstein et al., 2005). The GPP estimation was considered
unbiased only if the difference of GPP from both methods were within
20% of their average or within 2 g C m−2 day−1, in which case GPP
was then calculated as the average of both methods. We found that this
criterion performed well and most rejected data were extrapolated for
very long gaps with low reliability. In addition, we also analyzed the
instantaneous and daily GPP relationships using GPP estimated from
either the daytime method or the nighttime method, as a support for the
robustness of our findings. We did not use the original half-hourly data
as it would generate too many GPPinst-GPPdaily comparisons; six two-
hour bins were enough to get the diurnal change of their relationship.

2.2. Relationship between instantaneous and daily GPP at seasonal scale
across sites

The relationship between daily GPP (GPPdaily) and instantaneous
GPP (GPPinst) can be built for each day using a conversion factor (γGPP):

=γ
GPP
GPPGPP

daily

inst (1)

The GPPdaily (in g C m−2 day−1) was calculated as the cumulative
summation of half hour GPP (expressed in μmol CO2 m−2 s−1 in the
FLUXNET2015 dataset), but was converted to μmol CO2 m−2 s−1

(representing the average instantaneous GPP over a 24-hour period)
when compared with GPPinst. γGPP can be calculated for each site each
day at seasonal scale. If γGPP at one site has little variation across time,
it indicates that GPPinst can represent GPPdaily at temporal scale.
Similarly, if γGPP has little variation across sites, it indicates that GPPinst
can represent GPPdaily at across sites. For simplicity, we built linear
regressions with zero intercept between GPPdaily and GPPinst for each
site at seasonal scale; a high R2 indicates γGPP is seasonally stable for a
given site and γGPP can be calculated as the regression slope (Fig. 2).
The variability of regression slopes (γGPP) across sites is indicative of the
variability of the relationship across space.

2.3. Relationship between instantaneous and daily LUE at seasonal scale
across sites

LUE is a very important parameter that connects light absorption by
the ecosystem and the carbon fixation through photosynthesis
(Monteith, 1972). The instantaneous and daily light use efficiency
(LUEinst and LUEdaily, respectively) are defined as follows:

=
×

LUE GPP
fPAR PARinst

inst

inst (2)

=
×

LUE
GPP

fPAR PARdaily
daily

daily (3)

The GPPinst and PARinst were also averaged over 2 h from 6:00 am to
6:00 pm local time for each site. For simplicity, both daily GPP and PAR
are in the same unit as instantaneous GPP and PAR, representing the
average value of a 24-hour period. Within one day, the diurnal varia-
tion of the fraction of the PAR absorbed by the canopy (fPAR) is rela-
tively small (Fensholt et al., 2004) and is neglected. Following the de-
finition of γGPP, we can also define the γLUE, i.e., the ratio of LUEdaily
over LUEinst.

= = ≈ =γ
LUE
LUE

ELUE
ELUELUE

daily

inst

GPP
APAR

GPP
APAR

GPP
PAR
GPP
PAR

daily

inst

daily

daily

inst
inst

daily

daily

inst
inst (4)

where the ELUE represents the ecosystem LUE and is calculated as GPP
PAR

.
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Similarly, we did not calculate γLUE for each day, but used the regres-
sion slope between daily and instantaneous ecosystem LUE
( =ELUEdaily

GPP
PAR

daily

daily
and =ELUEinst

GPP
PAR

inst
inst

, respectively) for each site.

The use of ELUE rather than LUE avoided the uncertainties related to
the calculation of fPAR.

2.4. Analytical conversion from instantaneous to daily APAR

Both SIF and GPP are driven by the incident solar irradiance and
therefore both exhibit a diurnal cycle. Thus, the relationship between
the daily APAR (APARdaily) and instantaneous APAR (APARinst) is very
important to determine the relationship between SIFdaily and SIFinst, and
GPPdaily and GPPinst. As diurnal changes in incoming solar radiation are
mostly determined by the solar zenith angle (SZA), we can calculate the
conversion factor between APARinst and APARdaily (γAPAR) as below:

= ≈ ≈γ
APAR
APAR

PAR
PAR

cos(SZA)
cos(SZA)APAR

daily

inst

daily

inst

daily

inst (5)

This approach did not consider the minor diurnal variation of fPAR
and the cloud and atmospheric scattering effect on PAR. The cos
(SZA)daily can be calculated following the method documented in
Frankenberg (2015):

∫=
+

−
cos(SZA) cos(SZA(t))dt

t h

t h
daily 12

12

(6)

The SZA for each site was calculated using the “RAtmosphere”
package (https://cran.r-project.org/web/packages/RAtmosphere/
index.html) in R language (https://www.r-project.org/). The “SZA”
function can calculate the SZA of a specific location based on its lati-
tude, date, and local time of day. The instantaneous SZA was calculated
at a local time between 7:00 to 17:00 with a time-step of 2 h corre-
sponding to the mid-time of each GPP aggregation bin. The cos
(SZA)daily was calculated numerically as the integral of cos(SZA(t))dt at
a 10-minute time-step. Similarly, we used a linear regression between
cos(SZA)daily and cos(SZA)inst to estimate γAPAR at different times of the
day (TOD). The regression was forced to pass through the origin and the
regression slope represented γAPAR for a specific location. Because SZA
is a function of local time and latitude, γAPAR only varies with time and
latitude.

2.5. SCOPE model simulations

To investigate the relationship between instantaneous and daily SIF
(SIFinst and SIFdaily, respectively), and the GPP and SIF relationship both
at bi-hourly and daily scales, we used the SCOPE model (van der Tol
et al., 2014, 2009b) to simulate both SIF and GPP. SIFdaily was calcu-
lated as the average of all half-hourly SIFinst within each 24-hour
period. To test whether γSIF (SIFdaily/SIFinst, unitless) also exhibits a
latitudinal pattern similar to GPP, we selected five grassland or sa-
vannas sites (DK-ZaH, US-Ivo, DK-Eng, US-Var, CG-Tch) along the la-
titude where the cosines of latitudes of these sites are close to 0.2, 0.4,
0.6, 0.8, and 1 (Table S1, Fig. S1). We chose the grassland/savannas
biome types since they are broadly distributed at different latitudes and
their canopy structure is relatively simple. Except CG-Tch, all other sites
are dominated by C3 species, C3 and C4 pathways were simulated
differently in the SCOPE model. US-Var and CG-Tch also have sparse
tree coverage in the GOME-2 SIF and EVI/MTCI footprint (0.5° × 0.5°

and 5 km × 5 km, respectively), while the tree coverage in the flux
tower footprint is relatively low. This can cause inconsistency when
validating model simulation with flux tower measurements and satellite
observations.

Chlorophyll a+ b content (Cab), maximum carboxylation rate
(Vcmax) and the leaf area index (LAI) are the most influential parameters
for simulating SIF and GPP with the SCOPE model (Verrelst et al., 2015;
Zhang et al., 2016a). For Cab, we followed the method used in previous
studies (Zhang et al., 2014; Zhang et al., 2016a). The Cab was inversely

estimated from a lookup table generated by the forward simulation of
the PROSPECT model with a large number of parameter combinations.
The 8-day Enhanced Vegetation Index (EVI) and MERIS Terrestrial
Chlorophyll Index (MTCI Dash and Curran, 2004) for those five sites
were used as inputs and Cab was inverted at 8-day intervals. All other
climate inputs were obtained from the flux tower measurements, and
the LAI was obtained from the MODIS LAI product using the Oak Ridge
National Laboratory MODIS global subsets tool with a footprint of 5 km
to match with that of MTCI (https://modis.ornl.gov/cgi-bin/MODIS/
GLBVIZ_1_Glb/modis_subset_order_global_col5.pl). The maximum car-
boxylation rate at 25 °C (Vcmax) were set to constant for each site fol-
lowing previous studies (52 μmol m−2 s−1 for C3 grass and 30 μmol
m−2 s−1 for C4 grass) (Kattge et al., 2009; Wullschleger, 1993; Zhang
et al., 2016a). The canopy height was set to 0.5 m throughout the
growing season and the leaf inclination angle distribution was empiri-
cally set to spherical (Asrar et al., 1986). These parameter settings may
introduce uncertainties, but are thought to have limited effects on the
instantaneous-daily relationship (Verrelst et al., 2015, 2016). Other
unspecified parameters were set to their default values for each eco-
system type in SCOPE v1.61 (https://github.com/Christiaanvandertol/
SCOPE).

2.6. Comparison of satellite retrieved SIF and GPP at global scale

Since SIF can also be expressed as a function of APAR
(SIF = APAR × FE, FE: apparent fluorescence efficiency), we can ap-
proximate SIFdaily from SIFinst by assuming that FE has little variation at
a diurnal scale. This is a first-order approximation since two con-
tributing factors of FE, namely quantum yield for fluorescence (ϕF) and
escape coefficient for near-infrared SIF (fesc, how much SIF emitted by
individual leaf can escape the canopy without being re-absorbed by
other leaves) have a much smaller variation compared to the diurnal
variation of PAR (data not shown), especially at the far-red band. The
SIFdaily can be approximated as:

≈ ≈SIF
APAR
APAR

SIF
PAR
PAR

SIFdaily
daily

inst
inst

daily

inst
inst (7)

where SIFinst is the satellite retrieved SIF and PARdaily is analytically
estimated from SZA, PARinst can be estimated from the SZA when the
observation was made, which is embedded in the GOME-2 and OCO-2
SIF product. We did not use the PARinst for the satellite overpass time
(e.g., 9:30 am for GOME-2 and 1:30 pm for OCO-2) since that overpass
time only applies for equator, higher latitudes may have some varia-
tion. In this study, we used both the GOME-2 SIF v26 product from the
MetOp-A satellite (Joiner et al., 2013, 2016), and the OCO-2 SIF Lite
product (B7101r) (Frankenberg, 2015; Frankenberg et al., 2014). The
MetOp-A satellite has an overpass time of ~9:30 am and SIF was re-
trieved around the wavelength of 740 nm using a principle component
analysis algorithm (Joiner et al., 2013). These retrievals had a footprint
of 40 km× 80 km (40 km × 40 km after 15 July 2013) and were fur-
ther aggregated to a 0.5° × 0.5° monthly gridded product. The OCO-2
SIF was retrieved around 757 nm using an iterative least squares fitting
technique. Each day, around 100,000 soundings were collected on land
with a footprint of ~2 km × 1.3 km. We aggregated the raw SIF re-
trievals to monthly 0.5° × 0.5° gridded product following the quality
check instructions. Since this dataset only became available since
September 2014, it cannot be directly compared with GPP dataset. We
used 2 year of data (2015, 2016) to calculate the average SIF of each
month. In this way, we ignored the interannual variation and focused
on the seasonal variation.

We used the monthly GPP product from FluxCom with a spatial
resolution of 0.5° × 0.5°. The FluxCom GPP was generated using three
machine learning algorithms, combined with GPP estimated from the
daytime method (Lasslop et al., 2010) and nighttime method
(Reichstein et al., 2005) from the EC flux towers, and the remote sen-
sing VIs and meteorological variables (Jung et al., 2017; Tramontana
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et al., 2016). The averaged GPP from 6 methods (3 machine learning
algorithm × 2 partitioning methods) between 2007 and 2013 were
calculated to match the GOME-2 SIF data availability. To compare with
the OCO-2 SIF, GPP from 2007 to 2013 were used to calculate the
average GPP for the 12 months since these two products do not have
overlapping period. This multi-year average can well represent the
seasonal dynamic of GPP for each individual year (Fig. S8). Because
monthly gridded OCO-2 SIF do not cover the entire global land surface
due to the satellite's orbit, we masked the GPP with OCO-2 SIF for the
corresponding months before comparison.

To compare the SIF-GPP relationship within each biome type, we
aggregated the MODIS MCD12C1 land cover product (https://lpdaac.
usgs.gov/dataset_discovery/modis/modis_products_table/mcd12c1) to
0.5° × 0.5° spatial resolution to match with GPP and SIF. For each
0.5° × 0.5° gridcell, we calculated the percentage of each land cover
type. Only the gridcells dominated by one land cover type (more than
80%) were considered as “pure” gridcells and used for further analysis
(Zhang et al., 2016c). Since the northern hemisphere and southern
hemisphere have different growing season, SIF and GPP were averaged
within each biome type for each hemisphere.

3. Results

3.1. Comparison between instantaneous GPP and daily GPP at seasonal
scale

Fig. 2 shows a comparison between GPPdaily and GPPinst at seasonal
scale for the Tchizalamousite site in the Congo (CG-Tch) as an example.
All GPPinst values at different times of the day (TOD) generally followed
the variation of GPPdaily, and the γGPP was also relatively stable across
time for TODs between 8:00–16:00 (Fig. 2(a, b)). The regression ana-
lysis between GPPdaily and GPPinst also showed a similar pattern: TOD
with less γGPP variation exhibited a higher R2 and the regression slope
between GPPdaily and GPPinst corresponded to the value of γGPP. This
confirms the feasibility of using regressions between GPPdaily and
GPPinst to investigate the seasonal and spatial variations of γGPP.

Using the correlation analysis between GPPdaily and GPPinst from all
135 sites at a seasonal scale, we gathered information of the coefficient
of determination (R2) and the regression slopes for each site. For most
sites, GPPinst showed a good correlation with GPPdaily, especially for
GPPinst between 8:00 to 16:00 (Fig. 3a). The correlation was lower for
very early morning and late afternoon, but the average R2 values for
these two periods were still higher than 0.8. The regression slopes be-
tween GPPdaily and GPPinst also varied for different TODs. The averages
of regression slopes slightly declined from early morning to midday and
increased afterwards. For the period between 8:00 to 16:00 when
GPPdaily and GPPinst relationships were stronger, the regression slopes
also showed less variation.

We also explored the spatial patterns of the regression slopes be-
tween GPPdaily and GPPinst, by comparing the regression slopes with the
cosine of the latitude for each site (Fig. 4). The regression slopes in-
creased from tropical regions (cos(latitude) = 1) to polar regions (cos
(latitude) = 0) for most TODs. Between 8:00 to 16:00, the regression
slopes between GPPdaily and GPPinst can be approximated as a function
of cos(latitude), with relatively high R2 during the midday period (0.81
and 0.87). Biome types did not show much effect on this relationship.
Using the analytical approach based on the calculated SZA (Eq. (5)), we
obtained the γAPAR at each latitude. The resultant black lines in Fig. 4
generally well-predicted this latitudinal pattern, especially between
8:00 to 16:00. The R2 between GPPdaily and GPPinst also exhibited a
latitudinal pattern that could be predicted by the analytical solution of
APAR variation (Fig. S2). GPP from daytime and nighttime partitioning
methods also exhibited a similar pattern (Figs. S3, S4).

3.2. Comparison between sub-daily instantaneous LUE and daily LUE at
seasonal scale

Fig. 5 shows the comparison between the instantaneous LUE and
daily LUE for each site at the seasonal scale. Except for the early
morning and late afternoon, LUEinst values were generally highly cor-
related with LUEdaily, and this correlation was highest during the
middle of the day (10:00–14:00). The regression slopes between
LUEdaily and LUEinst were also relatively stable for TODs when R2 values
were high. In addition, the slope showed an “U” shape along time with
the lowest value being reached during the middle of the day (Fig. 5b).
The regression slopes were close to 1 around 10:00 or 14:00, which
indicated that the LUEinst at those times can be an approximation of
LUEdaily.

The difference between the fitted γGPP curve (red) and simulated
γAPAR curve (black) at different TODs in Fig. 4 can be explained by the
diurnal change of the LUEdaily and LUEinst relationship (γLUE). This
diurnal change of γLUE is caused by light saturation of GPP as shown in
Fig. 6. GPP increases almost linearly with APAR until a light saturating
period is reached, when GPP becomes less responsive to radiation
(Fig. 6b). This lead to lowest LUE values close to midday, when incident
PAR and APAR are the highest (Fig. 6a). The light response curve also
suggests that the LUEinst around 9:00 and 15:00 solar time is close to the
LUEdaily. This explains the overlap of the fitted γGPP and simulated γAPAR
curves during 8:00–10:00 and 14:00–16:00; and the higher γGPP be-
tween 10:00–14:00 over the latitudinal gradient (Fig. 4).

3.3. Comparison between simulated instantaneous and daily SIF from the
SCOPE model

To explore whether the instantaneous SIF (SIFinst) and daily SIF
(SIFdaily) also exhibit a similar latitudinal pattern, we used the SCOPE
model and simulated both SIF and GPP for five grassland (or savannas)
sites, which cover a wide latitudinal range. The model was run at 30-
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Fig. 3. Boxplots of bi-hourly (a) coefficient of determination (R2) and (b) linear regres-
sion slope between the daily and instantaneous GPP (γGPP) at seasonal scale across 135
flux tower sites. The linear regressions were forced to pass the origin. Different colors
represent GPP estimates from the daytime method (red), nighttime method (blue) or the
average of both (grey). The unit of the instantaneous GPP was converted from
μmol CO2 m−2 s−1 to g C m−2 day−1 so that the regression slope is unitless. (For in-
terpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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minute intervals for one year to be consistent with the EC data. The
simulated GPP and SIF data generally agreed well with the EC tower
derived GPP and the SIF retrievals from the GOME-2 instrument (Figs.
S5, S6). Most discrepancies were caused by the mismatch of the satellite
and flux tower footprints and the uncertainty of LAI or Cab inversions
(both the method and the vegetation indices used).

Using the SCOPE model, we found that SIF also followed a similar
latitudinal pattern driven by the seasonal variation of PAR. Since we
only used one year of data, the γGPP values for the five sites were
sometimes higher than the fitted relationship for some times of day.
However, for 8:00–10:00 and 14:00–16:00 when the fitted γGPP was
close to the analytical γAPAR, the regression slopes for simulated SIF
from the five sites were close to that of simulated GPP. For 10:00–14:00
when the fitted γGPP was higher than the analytical γAPAR, the regres-
sion slopes for simulated GPP were also higher than those of simulated
SIF. Unlike GPP, which has a light saturation period that makes the
fitted γGPP deviate from the γAPAR during the midday, SIF did not show
much light saturation and directly followed the γAPAR latitudinal pat-
tern.

We further compared the relationship between the simulated in-
stantaneous SIF and the daily total GPP at the seasonal scale for these
five sites (Fig. 8). The linear relationships between GPP and SIF were
usually stronger at midday for low to mid-latitude sites, i.e., CG-Tch,
US-Var, DK-Eng. But this advantage was not evident for higher latitude
sites (DK-ZaH). The daily total SIF and daily total GPP had the highest
correlation for both C3 and C4 sites. For C3 sites (all sites except CG-
Tch), the regression slopes for SIF and GPP exhibited a smaller variation
for early morning and late afternoon (CV = 0.18 and 0.12 for
6:00–8:00 and 16:00–18:00, respectively). While during midday, the
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Fig. 4. Latitudinal distribution of regression slopes between daily and instantaneous GPP (γGPP). GPP from the average of both partitioning methods were used. All biome types (shown in
different colors) are aggregated to forest (ENF, EBF, DNF, DBF, MF), shrubland (WSA, OSH, CSH), grassland (GRA, WET, SAV), and cropland (CRO), as shown in different colors. For the
full names of the biome types, please refer to the Supplementary information Table S1. Black lines represent the relationship derived from the analytical approximation for γAPAR and cos
(latitude). The red dashed lines represent the fitted logarithmic regressions for all sites and not shown in (a) and (f) since the relationship was not significant. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Comparison between bi-hourly LUEinst and LUEdaily across flux tower sites at the
seasonal scale. For each site, the correlation and regression slope between LUEdaily and
LUEinst (γLUE) at seasonal scale were calculated. Different colors represent GPP estimates
from the daytime method (red), nighttime method (blue) or the average of both (grey).
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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variation was larger (CV = 0.31 and 0.27 for 10:00–12:00 and
12:00–14:00, respectively). When comparing SIFdaily with GPPdaily, the
regression slopes for all C3 vegetation sites tended to converge to a
constant value (0.066, CV = 0.10).

3.4. GPP-SIF comparison at global scale

Fig. 9 shows the comparison between SIFinst or SIFdaily with GPP
from FluxCom. SIFinst are from direct observations from GOME-2 and
OCO-2, while SIFdaily values are from analytical approximation using
Eq. (7). The SIFdaily showed a slightly higher linear correlation
(R2 = 0.94 ± 0.08 for GOME-2 and R2 = 0.90 ± 0.20 for OCO-2)
with GPP than SIFinst (R2 = 0.92 ± 0.11 for GOME-2 and
R2 = 0.85 ± 0.25 for OCO-2). Except savannas in the southern
hemisphere for GOME-2 (0.963 vs. 0.961), all other biome types'
coefficient of determination are higher for SIFdaily than SIFinst. In ad-
dition, the regression slopes among all the biome types for both
hemispheres had smaller variation for SIFdaily than SIFinst. The use of
SIFdaily rather than SIFinst showed better improvement of the GPP-SIF
relationship for OCO-2 than for GOME-2. Although the comparison
between GPP and OCO-2 SIF are from different years, it is expected to
have limited effect on our results as the year-to-year variation could be
ignored for most biome types (Fig. S8).

4. Discussion

4.1. The relationship between daily GPP and instantaneous SIF across space
and time

The spatial and seasonal relationship between GPPdaily and satellite
observed SIFinst is complicated because both SIF and GPP are driven by
solar radiation and have diurnal and seasonal cycles. In this study,
using data from multiple flux tower sites, which cover a large spatial
extent, we investigated the key issues for estimating spatial and

seasonal GPP dynamics using satellite-retrieved SIF signals.
To link GPPdaily with SIFinst, we use:

=
×

×
= × ×

= × ×
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LUE
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inst (8)

In our study, we have demonstrated that the γAPAR is related to the
latitude, which is controlled by the seasonal change of day length. As
the latitude increases from tropical to polar regions, the day length
during the growing season also increases. The instantaneous PAR ob-
servation will be close to the average daily PAR during the polar day-
time (during the peak growing season in summer), but will be much
larger when sun only illuminates for half of the day. We also demon-
strated that the variation of γLUE is related to the observation time
mostly caused by the light saturation of photosynthesis and midday
depression. The midday depression can be found in some low latitude
sites (cos(latitude) ≈ 0.8) where the estimated R2 for GPPinst-GPPdaily
deviates from the R2 predicted with PAR during the midday
(10:00–14:00), indicating γGPP at midday may have higher variation
throughout the growing season (Fig. S2). However, this midday varia-
bility does not have much effects on the GPPinst-GPPdaily regression
slopes (Fig. 4). The combination of γAPAR × γLUE can explain the lati-
tudinal and diurnal pattern of the GPPdaily-GPPinst relationship. For a
specific satellite, we do not need to take γLUE into consideration as the
observation time is often stable (except for the Polar Regions where
multiple observations may be obtained within one day), but the lati-
tudinal pattern of γAPAR still needs to be considered. However, when
comparing GPP with SIF data from different satellites, the observation
time will affect the γLUE and needs to be taken into account. This means
that the GPP-SIF relationship derived from one satellite cannot be di-
rectly applied to another if the overpass times of the satellites are dif-
ferent.

Simulations using the SCOPE model suggest that γSIF tends to follow
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Fig. 6. (a) Dynamic of sub-daily GPP, APAR, and LUE, and
(b) the relationship between APAR and GPP at sub-daily
scale. One clear day (June 13th, 2014) of data from the US-
WCr site is used as an example. The GPP is estimated from
the daytime (light response curve) method. All the in-
dicators are normalized by their maximum values. The two
vertical dashed lines in (a) indicate the time at which LUEinst
equals to LUEdaily. The slopes of the solid lines in (b) re-
present LUEinst (GPPinstnormalized/APARinst

normalized) at dif-
ferent times of the day and LUEdaily.
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γAPAR during midday (Fig. 7). This is consistent with the relatively
stable fluorescence yield (ϕF) under high light intensity found in pre-
vious studies (Lee et al., 2015; van der Tol et al., 2014). But a larger
variation of ϕF may occur during the shift from low to high irradiance,
i.e., when the non-photochemical quenching begins to take effect and
the negative correlation between ϕF and ϕP shifts to positive (Porcar-
Castell et al., 2014). The relatively stable ϕF under high light intensity
can also explain the higher GPP-SIF correlation during midday
(10:00–14:00) than early morning or late afternoon for low latitude
sites (Fig. 8). However, this advantage is not evident for higher latitude
sites, where the growing season in summer is characterized by a very
long daytime length and PAR is already/still high at 6:00–8:00 and
16:00–18:00. The regression slopes between GPPdaily and SIFinst also
had relatively larger variations for midday than early morning or late
afternoon, which may be related to the light saturation: lower latitude
sites are more likely to be light-saturated during the midday than
higher latitude sites. It should also be noted that current version of the
SCOPE model did not consider the relationship between nitrogen con-
tent (or chlorophyll a+ b) and maximum carboxylation rate (Vcmax)
(Ollinger et al., 2008; van der Tol et al., 2009b), therefore the GPP-SIF
relationship may be better evaluated with a variable Vcmax value. We
conducted some preliminary analysis using a variable Vcmax that is
linearly correlated with Cab. The Vcmax was allowed to drop to 50% of
its maximum value when Cab was at its minimum. We reproduced
Fig. 8 with this variable Vcmax settings (Fig. S9), but the results were
very similar: high linear correlation were still found when comparing
GPPdaily with SIFdaily.

The relationships between LUEinst and fluorescence efficiency
(FEinst, includes the information of both ϕf and the escape coefficient)
are still unclear at the seasonal and spatial scale (Porcar-Castell et al.,
2014). Recent modeling studies suggested a nonlinear SIF-GPP

relationship at half-hour scale and a strong linear relationship at daily
and 16-day scale (Damm et al., 2015; Zhang et al., 2016a). Our com-
parison between the GOME-2 SIF and FluxCom GPP also showed higher
correlation when using the SIFdaily value. The variations of the regres-
sion slopes across biome types may be related to the C3–C4 species
composition (Guan et al., 2016; Liu et al., 2017), average cloud cover
during the growing season which affects the direct/diffuse radiation
(Gu et al., 2002), canopy characteristics which affect the energy par-
titioning in different layers and SIF re-absorption (Damm et al., 2015;
Migliavacca et al., 2017), and environmental limitations of photo-
synthesis (temperature, water, etc.) (Ac et al., 2015; van der Tol et al.,
2014). These factors together with the latitudinal pattern need to be
taken into account when interpreting the relationship between the sa-
tellite-based SIFinst and GPPdaily at spatial and seasonal scales. In ad-
dition, since the midday SIF signal is stronger and the FEinst is more
stable and close to the daily average, satellites SIFinst observations with
a midday overpass time may have a more linear relationship with
GPPdaily than those with a morning or afternoon overpass (Fig. 10).
However, it should still be noted that the GPP-SIF relationship is af-
fected by the canopy architecture (leaf angle distribution, leaf
clumping) but is considered invariant in our simulation. We also tested
the SCOPE simulation using other leaf angle distributions (e.g., plano-
phile, erectphile), but the results are similar (data not shown). Some
recent studies suggest that 3-dimension canopy structure can be im-
portant for canopy energy and carbon fluxes simulations for grass-tree
mixed ecosystems (Kobayashi et al., 2012). A more comprehensive re-
presentation of 3-dimension canopy structure needs to be incorporated
into the SCOPE model to further investigate the effect of canopy
structure on SIF-GPP relationship.

Fig. 7. Latitudinal pattern of regression slopes between daily and instantaneous SCOPE simulated GPP, SIF, and GPP derived from EC tower (open circles). Only one year of data is used
(Fig. S5). The red dashed line is from the fitted relationship between daily and instantaneous GPP from EC towers as shown in Fig. 4. The black lines represent the γAPAR from the
analytical estimation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Potential uncertainty for phenological analysis using GOME-2 SIF

As SIF is a measure of energy and has strong diurnal variations, the
interpretation of SIF signals at seasonal scale should also be taken with
caution. This is directly related to phenology studies, which used SIF as
an indicator of vegetation activity (Jeong et al., 2017; Joiner et al.,
2014; Walther et al., 2016). Previous phenology studies either used
leaf/canopy development or seasonal change of plant physiological
properties (e.g., GPP, APAR, termed as “physiological phenology”)

(Migliavacca et al., 2015; Piao et al., 2006; Wu et al., 2013; Zhou et al.,
2016). The physiological phenology, being different from conventional
phenology definition of leaf development or flowering time, is more
related to the ecosystem carbon fluxes that directly controlled by plant
physiology. The leaf/canopy development measurement can either
come from in situ observations (Fu et al., 2015) or satellite-based VIs
(Zhang et al., 2003). For the satellite-based VI studies, the start of the
growing season is usually determined by detecting the maximum
change of rate of VI (second order derivative equals to zero) (Wang
et al., 2015; Wu and Liu, 2013; Zhang et al., 2013), or using a threshold
(Cong et al., 2013; Zhang et al., 2016b). Since VIs have little diurnal
variation, the VIs obtained from different overpass times on a seasonal
course can be regarded as the seasonal vegetation growth. In contrast,
SIF is a measurement of the energy, and its seasonal variation is con-
trolled by both the seasonal variation of incoming solar radiation, the
leaf phenology (fraction of energy being absorbed) and the photo-
synthetic physiology (fraction of light being emitted as SIF). The con-
tribution from solar radiation is higher at high latitude since PAR at a
specific time of day also has large seasonal variations. Therefore, phe-
nology derived from satellite-based SIF measurements cannot be di-
rectly compared with phenology derived from VI measurements unless
SIF is properly normalized by SZA or instantaneous PAR.

Another question is whether SIF-based phenology can be compar-
able with GPP or net ecosystem exchange (NEE) based phenology
(physiological phenology)? As concluded above, daily SIF has a strong
linear relationship with daily GPP within each specific site and should
have an advantage over VI at high latitude evergreen ecosystems. When
doing phenology analysis, each pixel is analyzed in the temporal do-
main therefore the latitudinal pattern of instantaneous to daily con-
version can be ignored. Then the question becomes whether the con-
version from the SIFinst to SIFdaily is stable across seasons? Fig. 11(a)
shows that the correction factor for GOME-2 and OCO-2 overpass time
is not stable even during the growing season for the site US-Ivo. This
correction factor has larger variations at higher latitudes, and differs for
different satellite overpass times, which may explain the different
phenology retrievals of using GOME-2 SIF and GOSAT SIF for boreal
forest (Jeong et al., 2017).

To reconcile the discrepancy between SIF and VI observations
(Walther et al., 2016), we can either calculate the SIF normalized by the
incoming solar radiation at the satellite overpass, represented by the
cosine of the solar zenith angle (cos(SZA)). SIF/cos(SZA) will be a
measure of fPAR × FEinst and can be used for leaf/greenness based
phenology estimation. Alternatively, we can convert the satellite mea-
sured SIFinst to SIFdaily using Eq. (7), which will be closely linked to the
daily GPP. This will give another robust estimation of the photo-
synthetically active period that can be compared with site level gas
exchange data. However, it should be noted that many studies show
that fPAR also has a diurnal variation which is related to the SZA, ratios
of diffuse to total radiation, and LAI (Chen, 1996; Nouvellon et al.,
2000), this may affect the SIFinst to SIFdaily conversion using this SZA
approximation method as well as the GPPinst-GPPdaily relationship.
Nevertheless, fPAR is usually found to be higher in early morning or the
late afternoon when PAR is low; the product of fPAR and PAR during
those times will have limited contribution to daily total APAR and GPP.
In addition, as most satellites that can retrieve SIF signals have an
overpass close to midday, when the fPAR is relatively stable, SIFinst is
also considered less affected by the diurnal variation of fPAR.

5. Conclusions

As satellite observations are often snapshots of the vegetation ac-
tivity, the usage of satellite observations to infer vegetation activity at
seasonal and spatial scales needs to be treated with caution, especially
for energy-based measurements such as SIF that exhibit a large diurnal
variation. Analyzing data from 135 flux tower sites, we found that both
spatial and diurnal patterns exist between daily and instantaneous (bi-

Fig. 8. Scatter diagrams showing the relationship between the instantaneous (upper pa-
nels) and daily (bottommost panel) SIF with daily GPP as computed with the SCOPE
model for the five sites (color coded) as indicated in the legend. The solid lines with
different colors represent the linear regression between SIF and GPP. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 9. Comparison between SIFinst and SIFdaily from GOME-2 (a, b) and OCO-2 (c, d) with GPP from FluxCom. Only the biome types with more than 100 gridcells were analyzed. Each
point represents the average of SIF or GPP for all the gridcells within this biome type for each month for northern or southern hemisphere. For GOME-2, altogether 84 months are used; for
OCO-2, 12 months are used (see Materials and method). The solid lines represent the linear regression for northern hemisphere and the dashed lines represent that for southern
hemisphere. The insets show the boxplot of the coefficients for all the regressions. For the full names of the biome type, please refer to the Supplementary information Table S1.

Fig. 10. Schematic diagram showing the relationships between PAR, APAR, SIF and GPP at sub-daily and daily scales. The FEdaily and FEinst relationship is close to a constant only under
high light intensity, e.g., mid-noon. Solid lines represent that the two variables can be directly linked, while the dashed line represents the relationship cannot be directly established.
Abbreviations: PAR: photosynthetically active radiation; APAR: absorbed photosynthetically active radiation; fPAR: fraction of absorbed photosynthetically active radiation; FE:
fluorescence efficiency; SIF: solar-induced chlorophyll fluorescence; LUE: light use efficiency; GPP: gross primary production; TOD: time of day.
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hourly) GPP. The latitudinal pattern is caused by the variation of PAR
and the diurnal pattern is caused by the diurnal variation of LUE.

SIF has shown a high potential to predict GPP across broad spatial
and seasonal scales. However, satellite-derived instantaneous SIF re-
trievals and daily GPP relationships on spatial and seasonal courses are
still affected by several factors such as latitude, satellite overpass time,
C3/C4 composition, environmental stress, canopy architecture, etc.
Using the SCOPE model simulation and the comparison between
GOME-2 SIF and FluxCom GPP, we have shown that the relationship
between daily average SIF and daily total GPP are more consistent
across latitudinal gradients and biome types than those between in-
stantaneous SIF and daily GPP, and the correction factor from

instantaneous to daily SIF improved the linear relationship between
satellite-based SIF retrievals and daily GPP. This factor should also be
applied when using SIF to derive the physiological phenology. Since
this correction factor is based on the analytical approximation of solar
zenith angle and does not consider the diurnal variation of other en-
vironmental factors (e.g., temperature, water stress), more in situ
measurements of SIF are needed at sub-daily time scale for different
ecosystems to better interpret the GPP-SIF relationship globally.
Canopy architecture that directly affects the energy absorption and
partitioning in different layers can be another important issue that
warrants further study. The NASA Tropospheric Emissions: Monitoring
of Pollution (TEMPO), Geostationary Carbon Cycle Observatory
(GeoCARB), as well as European Sentinel 4 missions will provide fur-
ther valuable insights about the diurnal SIF variation at regional and
larger scales.
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