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Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understand-
ing of the spatial-temporal patterns of the global carbon cycle. In this study,we estimateGPP inNorth America (NA)
using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS images at 8-day temporal and 500 m
spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional
Reanalysis) climate data. The simulated GPP (GPPVPM) agrees well with the flux tower derived GPP (GPPEC) at 39
AmeriFlux sites (155 site-years). The GPPVPM in 2010 is spatially aggregated to 0.5 by 0.5° grid cells and then
compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2
(GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of
GPPVPM and GOME-2 SIF show good consistency. At the biome scale, GPPVPM and SIF shows strong linear relation-
ships (R2 N 0.95) and small variations in regression slopes (4.60–5.55 g C m−2 day−1/mWm−2 nm−1 sr−1). The
total annual GPPVPM in NA in 2010 is approximately 13.53 Pg C year−1, which accounts for ~11.0% of the global
terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven
models (11.35–22.23 Pg C year−1). Among the seven models, some models did not capture the spatial pattern of
GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate
the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark
to compare with GPP models.

© 2016 Elsevier Inc. All rights reserved.
Keywords:
Vegetation Photosynthesis Model (VPM)
Light use efficiency
Remote sensing
SIF
MODIS
Carbon cycle
GPP product
1. Introduction

Carbon dioxide fixed through photosynthesis by terrestrial vegeta-
tion is known as gross primary production (GPP) at the ecosystem
level. Increased carbon uptake during the past decades helped offset
growing CO2 emissions from fossil fuel burning and land cover change
and mitigate the increase of atmospheric CO2 concentration and global
climate warming (Ballantyne, Alden, Miller, Tans, & White, 2012). A va-
riety of approaches have been used to estimate GPP of terrestrial ecosys-
tems, and they can be grouped into four categories: 1) process-based
GPP models; 2) satellite-based production efficiency models (PEM); 3)
data-driven GPP models upscaled from eddy covariance data; and 4)
y and Plant Biology, Center for
19, USA.
models based on sun-induced chlorophyll fluorescence (SIF) (Fig. 1).
However, large uncertainty still remains regarding the spatial distribu-
tion and seasonal dynamics of GPP,which limits our capability to address
scientific questions related to the increasing seasonal amplitude and in-
terannual variation of atmospheric CO2 (Forkel et al., 2016; Graven et al.,
2013; Poulter et al., 2014). An accurate estimation of GPP at regional and
global scales is essential for a better understanding of the underlying
mechanisms of ecosystem-climate interactions and ecosystem response
to extreme climate events, such as drought, heat wave, and flood, etc.
(Beer et al., 2010; Yu et al., 2013; Zhang et al., 2016).

Many process-based biogeochemical models employ the enzyme
kinetics theory, most well-known as encapsulated by Farquhar,
Caemmerer, and Berry (1980) and its modification for C4 plants
(Collatz, Ribas-Carbo, & Berry, 1992). Some process-based models
employ the light-use-efficiency (LUE) concept to estimate GPP
(Zeng, Mariotti, & Wetzel, 2005). These models also take multiple
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Fig. 1. A list of different approaches and models (as examples) to estimate gross primary production (GPP) of vegetation.
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ecological processes into consideration so that they can be coupled
with general circulation models (GCMs) to predict feedbacks related
to the global warming and CO2 fertilization (Booth et al., 2012;
Keenan et al., 2012; Piao et al., 2013; Xia et al., 2014). However,
these models are often run at coarse spatial resolution and the simu-
lation results vary enormously even with the same set of meteoro-
logical input datasets (Coops, Ferster, Waring, & Nightingale, 2009).

The remote sensing based PEMs estimate GPP as the product of
the energy absorbed by plants (absorbed photosynthetically active
radiation, APAR) and LUE that converts energy to carbon fixed during
the photosynthesis process (Monteith, 1972). These models can be
further divided into two subcategories (Dong et al., 2015a; Xiao et
al., 2004a). The FPARcanopy based models, including the Carnegie
Ames Stanford Approach (CASA) (Potter et al., 1993), the MODIS
GPP algorithm (Photosynthesis, PSN) (Running et al., 2004; Zhao,
Heinsch, Nemani, & Running, 2005), and the EC-LUE model (Yuan
et al., 2007), use the radiation absorbed by vegetation canopy. The
FPARchl/green based models use radiation absorbed by chlorophyll or
green leaves and include the Vegetation Photosynthesis Model
(VPM) (Xiao et al., 2004a; Xiao et al., 2004b), Greenness and Radia-
tion (GR) model (Gitelson et al., 2006), and the Vegetation Index
(VI) model (Wu, Niu, & Gao, 2010b).

The eddy covariance (EC) technique provides estimates of GPP by
partitioning measured net ecosystem CO2 exchange (NEE) between
land and the atmosphere into GPP and ecosystem respiration (Re)
(Baldocchi et al., 2001). Over the past decades, the EC technique
has been widely applied to measure NEE of various biome types
throughout the world, and a large amount of GPP data (GPPEC) has
been accumulated (Baldocchi, 2014; Baldocchi et al., 2001). A num-
ber of statistical models have been developed to upscale GPPEC
from individual sites to the regional scales (Jung, Reichstein, &
Bondeau, 2009; Jung et al., 2011; Xiao et al., 2010; Xiao et al., 2014;
Yang et al., 2007). These algorithms, such as model tree ensembles
(MTE) or regression tree approaches, build a series of rules through
data mining that relate in situ flux observations to satellite-based in-
dices and climate data.

Sun-induced chlorophyll fluorescence (SIF), a byproduct of the veg-
etation photosynthesis process, has been recently retrieved using mul-
tiple satellite platforms/instruments such as the Greenhouse gases
Observing SATellite (GOSAT) (Frankenberg et al., 2011; Guanter et al.,
2012; Joiner et al., 2011; Joiner et al., 2012), the Global Ozone Monitor-
ing Instrument 2 (GOME-2) (Joiner et al., 2013), and the Orbiting Car-
bon Observatory-2 (OCO-2) (Frankenberg et al., 2014). Recent field
studies and theory suggest that SIF contains information from both
APAR and LUE that is complementary to vegetation indices such as the
normalized difference vegetation index (NDVI) (Guanter et al., 2013;
Rossini et al., 2015; Yang et al., 2015). A simple regression model
based on space-borne SIF has been developed to estimate cropland
GPP (Guanter et al., 2014). Zhang et al. (2014) have also shown the po-
tential of SIF data to improve carbon cycle models and provide accurate
projections of agricultural productivity (Guan et al., 2015).

Over the past several years, a number of studies have run the VPM
with in situ climate data at various eddy flux tower sites. The resulting
GPPVPM was evaluated with GPPEC at different ecosystem types, includ-
ing forests (Xiao et al., 2004a, 2004b, 2005), croplands (Kalfas, Xiao,
Vanegas, Verma, & Suyker, 2011; Wagle, Xiao, & Suyker, 2015), sa-
vannas (Jin et al., 2013), and grasslands (He et al., 2014; Wagle et al.,
2014). Wu, Munger, Niu, and Kuang (2010a) compared GPP from four
models driven by remotely sensed data at the Harvard forest site and
found that VPM performed best in terms of capturing the seasonal dy-
namics of GPP. Yuan et al. (2014) compared seven LUE based models
at 157 eddyflux sites and showed that VPMhad amoderate rank of per-
formance. Dong et al. (2015a) used four EVI-based models to estimate
GPP of grasslands and croplands under normal and severe drought con-
ditions, and reported that VPM performed better than other models in
capturing the impacts of drought on GPP. This was mostly because
VPM uses Land Surface Water Index (LSWI) that is sensitive to water
stress (Wagle et al., 2014, 2015), while the other three models lack a
water stress scalar. Recently, simulations of VPM on the regional scale,
driven by regional climate data, have been carried out in the Tibetan Pla-
teau (He et al., 2014) and China (Chen et al., 2014), where only limited
GPPEC data are available for model calibration and validation.

In this study, we aim to assess the feasibility and performance of the
VPM model in estimating GPP across North America (NA) and explore
the relationship between SIF and GPPVPM at continental scale. The selec-
tion of theNA as study area is based on two facts: (1) large uncertainties
exist in the GPP estimates from various models (ranging from 12.2 to
32.9 Pg C year−1) (Huntzinger et al., 2012); and (2) a large number of
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eddy flux sites are available in NA, which provides an opportunity for a
thorough validation. The specific objectives of this study are to: (1) im-
plement the VPM simulation at the continental scale over NA; (2) eval-
uate the performance of VPM at individual sites using GPPEC data from
39 flux tower sites (155 site-years); (3) compare GPPVPM with GOME-
2 SIF data at 0.5° (latitude/longitude) resolution across NA; and (4)
use of GOME-2 SIF as a reference to compare with GPP estimates from
other six models. In this paper, we report (1) multi-year GPPVPM and
GPPEC at individual flux tower sites, dependent upon availability of
GPPEC data, and (2) GPPVPM in 2010 across NA.

2. Materials and method

2.1. Regional datasets for VPM simulations across North America

2.1.1. Climate data
The VPM model uses photosynthetically active radiation (PAR)

and temperature data as climate input data. We use the National
Center for Environmental Prediction-North America Regional Re-
analysis (NCEP-NARR) datasets (Mesinger et al., 2006) for 2000–
2014. The original three hourly data are first aggregated into 8-day
averages tomatch the temporal resolution of MODIS vegetation indi-
ces. The day-time mean air temperature is obtained by averaging the
temperature between 6 am to 6 pm local time. Zhao, Running, and
Nemani (2006) reported that the NCEP-NARR product overestimates
the surface shortwave radiation when comparing with the in situ ob-
servation at the flux tower sites. Jin et al. (2015) also compared the
NCEP-NARR radiation data with in situ radiation measurements at
37 AmeriFlux sites and reported a bias correction factor of 0.8. In
this study, we applied this factor to adjust the radiation data.

In order to run VPM at a 500 m spatial resolution, we use a non-
linear spatial interpolation method (Zhao et al., 2005) to downscale
the NCEP-NARR radiation and temperature dataset from the spatial
resolution of 0.25° × 0.25° to 500-m. It uses a fourth power of a co-
sine function and adopts the weighted distance from the nearest
four grid cells to calculate a value for each output pixel at MODIS res-
olution. The distance factor (Di) for the four nearby grid cells can be
calculated as follows:

Di ¼ cos4
π
2
� di

dmax

� �� �
i ¼ 1;2;3;4 ð1Þ

where di and dmax indicate the distance between the center of the
500 m MODIS pixel and each of the four vertex grid cells from
NCEP-NARR data, and the maximum distance between the four ver-
tex NCEP-NARR grid cells, respectively. For each MODIS pixel, the
weight from the four surrounding NCEP-NARR grid cells can be
calculated as:

Wi ¼
Di

∑4
i¼1 Di

ð2Þ

The final value for each interpolated MODIS pixel (V) can be
expressed as a weighted average:

V ¼ ∑
4

i¼1
Wi�Við Þ ð3Þ

where Vi is the value for the four surrounding grid cell values of NCEP-
NARR data.
2.1.2. MODIS data

2.1.2.1. MODIS surface reflectance and vegetation indices. The MODIS
MOD09A1 surface reflectance product (500 m spatial resolution and
8-day temporal resolution) is used to calculate the enhanced vegetation
index (EVI) (Huete et al., 2002) and LSWI as inputs to the VPM. LSWI is
calculated as the normalized difference between NIR (0.78–0.89 μm)
and SWIR (1.58–1.75 μm) and is sensitive to water content. Therefore,
LSWI is a good indicator of water stress from the vegetation canopy
and soil background (Xiao, Boles, Liu, Zhuang, & Liu, 2002). These two
indices are calculated as follows:

EVI ¼ 2:5� ρnir−ρred
ρnir þ 6� ρred−7:5� ρblueð Þ þ 1

ð4Þ

LSWI ¼ ρnir−ρswir

ρnir þ ρswir
ð5Þ

A temporal gap-fill algorithm is applied to the EVI time series data.
The data quality is checked using the quality flag layer, and those obser-
vations not affected by cloud and climatological aerosols are considered
‘GOOD’ quality (MOD35 cloud= ‘clear’; aerosol quantity= ‘low’ or ‘av-
erage’). Each pixel is temporally linearly interpolated using only good-
quality EVI observations within each year. A Savitzky–Golay filter is
then applied to each pixel to eliminate high frequency noise (Chen et
al., 2004). If a pixel has fewer than three out of 46 good observations
for one year, the original data (no gap-filled) are used. Fortunately,
this happens only for b0.5% of the total pixels and the majority of
those are in less productive, boreal areas.

2.1.2.2. MODIS land cover data. The MODIS MCD12Q1 land cover prod-
uct at 500-m spatial resolution (Friedl et al., 2010) includes annual
land cover types from 2001 to 2013. We use MCD12Q1 data in
2001 to represent year 2000, and MDD12Q1 data in 2013 to repre-
sent year 2014, which allows us to have a full time series of land
cover types for 2000–2014. The IGBP land cover classification
scheme in the dataset is used to provide biome specific information
for the VPM. A lookup-table (LUT) is used to get the essential param-
eters including maximum LUE as well as the maximum, minimum,
and optimum temperatures for vegetation photosynthesis (see Ap-
pendix Table A1).

In order to investigate the relationship between GPPVPM and SIF
(0.5° latitude and longitude resolution) in different vegetation/
biome types, we also aggregate the original 500 m land cover data
to 0.5° grid cells using the following procedure. The original IGBP
land cover data are first merged and reprojected onto the longi-
tude-latitude projection with the original spatial resolution.We cal-
culate the frequency (number of 500-m pixels) of individual
vegetation types within a 0.5° × 0.5° grid cell. Then, for each
0.5° × 0.5° grid cell, if one vegetation type is dominant (N75% of
the grid cell), this grid cell is assigned that vegetation type; if no
land cover type is dominant, the grid cell is not assigned a type.

2.1.2.3. MODIS land surface temperature data. TheMODISMYD11A2 land
surface temperature dataset is used to derive the thermal growing sea-
son and eliminate the snow cover period, which avoids the effect of
snow cover in retrieving the yearly maximum LSWI. The MYD11A2
dataset is chosen because it provides observations at 1:30 am, which
is close to the daily minimum temperature. For each pixel each year,
the thermal growing season is defined using the nighttime land surface
temperature (Dong et al., 2015b). Once three consecutive 8-day's in the
spring have nighttime temperatures above 5°C, the thermal growing
season begins; when three consecutive 8-day's in the fall have night-
time temperatures below 10°C, the thermal growing season ends. A de-
tailed application of this temperature-based phenology was recently
reported (Zhang et al., 2015).
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2.2. Datasets used to evaluate and compare VPM simulations across North
America

2.2.1. CO2 eddy flux data from AmeriFlux tower sites
CO2 flux data from 39 AmeriFlux sites are downloaded from the

AmeriFlux data portal (http://ameriflux.ornl.gov/). These flux sites
cover most of the major biomes in NA (DBF, ENF, MF, GRA, CRO, CSH,
OSH, WET and WSA) (Table 1). The 8-day level-4 gap-filled flux data
with the Marginal Distribution Sampling (MDS) method is used
(Reichstein et al., 2005). GPPEC estimates from individual sites are
used to evaluate GPPVPM.
2.2.2. Sun-induced chlorophyll fluorescence (SIF) data from GOME-2
The latest version (v26) of monthly SIF data from the GOME-2

instrument onboard Eumetsat's MetOp-A satellite is used in this
study and available to the public at http://acdb-ext.gsfc.nasa.gov/
People/Joiner/my_gifs/GOME_F/GOME-F.htm (Joiner et al., 2014).
GOME-2 captures earth radiation in the range from ~600 to
800 nm with a spectral resolution of ~0.5 nm at a nominal nadir
footprint of 40 × 80 km2 in the nominal observing configuration.
Wavelengths around 740 nm at the far-red peak of the SIF emission
are used for SIF retrievals with a principal component analysis
Table 1
Descriptions of the 39 flux tower sites used in this study. IGBP class, R2, and RMSE are the Intern
nation, and root mean square error of the regression analysis between tower-based gross pri
model.

ID NAME LAT LON IGBP class Years

US-Bo1 Bondville 40.0062 −88.2904 CRO
US-Ne1 Mead irrigated continuous 41.1651 −96.4766 CRO
US-Ne2 Mead irrigated rotation 41.1649 −96.4701 CRO
US-Ne3 Mead rainfed rotation 41.1797 −96.4397 CRO
US-Ro1 Rosemount- G21 44.7143 −93.0898 CRO
US-Ro3 Rosemount- G19 44.7217 −93.0893 CRO
US-KS2 Kennedy Space Center 28.6086 −80.6715 CSH
US-Los Lost Creek 46.0827 −89.9792 CSH
US-Bar Bartlett Experimental Forest 44.0646 −71.2881 DBF
US-Ha1 Harvard Forest 42.5378 −72.1715 DBF
US-LPH Little Prospect Hill 42.5419 −72.1850 DBF
US-MMS Morgan Monroe State Forest 39.3232 −86.4131 DBF
US-MOz Missouri Ozark Site 38.7441 −92.2000 DBF
US-UMB Univ. of Mich. Biological Station 45.5598 −84.7138 DBF
US-WCr Willow Creek 45.8059 −90.0799 DBF
CA-NS1 UCI-1850 burn site 55.8792 −98.4839 ENF
CA-NS2 UCI-1930 burn site 55.9058 −98.5247 ENF
CA-NS3 UCI-1964 burn site 55.9117 −98.3822 ENF
CA-NS4 UCI-1964 burn site wet 55.9117 −98.3822 ENF
CA-NS5 UCI-1981 burn site 55.8631 −98.4850 ENF
US-Blo Blodgett Forest 38.8953 −120.6328 ENF
US-Fmf Flagstaff Managed Forest 35.1426 −111.7273 ENF
US-Ho1 Howland Forest (main tower) 45.2041 −68.7402 ENF
US-Ho2 Howland Forest (west tower) 45.2091 −68.7470 ENF
US-Me2 Metolius-intermediate aged pine 44.4523 −121.5574 ENF 2002,
US-Me3 Metolius-second young aged pine 44.3154 −121.6078 ENF
US-Me5 Metolius-first young aged pine 44.4372 −121.5668 ENF
US-NC1 North Carolina Clearcut 35.8115 −76.7115 ENF
US-Wi0 Wisconsin young red pine 46.6188 −91.0814 ENF
US-Wi4 Wisconsin mature red pine 46.7393 −91.1663 ENF
US-ARb ARM SGP burn 35.5497 −98.0402 GRA
US-ARc ARM SGP control 35.5465 −98.0400 GRA
US-Goo Goodwin Creek 34.2547 −89.8735 GRA
US-Wlr Walnut River Watershed 37.5208 −96.8550 GRA
US-Syv Sylvania Wilderness Area 46.2420 −89.3477 MF
CA-NS6 UCI-1989 burn site 55.9167 −98.9644 OSH
CA-NS7 UCI-1998 burn site 56.6358 −99.9483 OSH
US-Ivo Ivotuk 68.4865 −155.7503 WET 2004,
US-FR2 Freeman Ranch-Mesquite Juniper 29.9495 −97.9962 WSA

CRO: cropland; CSH: closed shrublands; DBF: deciduous broadleaf forests; ENF: evergreen nee
WSA: woody savannas.
approach to account for atmospheric absorption. The results are
then quality-controlled (e.g., heavily cloud contaminated data re-
moved) and aggregated to monthly means at 0.5° × 0.5° spatial res-
olution (Joiner et al., 2013). In this study, we use GOME-2 SIF data
for the period from January 2010 to February 2011.
2.2.3. GPP data from other six models
The GPP data from the four process-based models (LPJ, LPJ-GUESS,

ORCHIDEE, and VEGAS) are part of the TRENDY projects (Sitch et al.,
2008), which intended to compare trends in net land-atmosphere car-
bon exchange over the period 1980–2010 (Table 3). These four models,
driven by the CRU+ NCEP climate data and global annual atmospheric
CO2, are chosen because they have different algorithms to simulate GPP
at 0.5° × 0.5° spatial resolution.

Another two models involved in the comparison are the MPI-
BGC and MODIS PSN. The MPI-BGC estimates GPP by upscaling
global CO2 flux observations using aModel Tree Ensemble approach
(Jung et al., 2009). MODIS PSN employs a production-efficiency ap-
proach and uses the MODIS fraction of photosynthetically active ra-
diation product (MOD15A2) and meteorological data (Running et
al., 2004). The C55 version of MODIS PSN product (MOD17A2
C55) is used.
ational Geosphere-Biosphere Programme land cover classification, coefficient of determi-
mary production (GPPEC) and simulated GPP (GPPVPM) using vegetation photosynthesis

used R2 RMSE Reference

2001–2006 0.83 2.20 Hollinger, Bernacchi, and Meyers (2005)
2001–2005 0.91 3.06 Suyker, Verma, Burba, and Arkebauer (2005)
2001–2005 0.91 2.71 Suyker et al. (2005)
2001–2005 0.85 2.76 Suyker et al. (2005)
2004–2006 0.80 2.45 Griffis, Baker, and Zhang (2005)
2004–2006 0.81 2.22 Griffis et al. (2005)
2004–2005 0.72 0.96 Dijkstra et al. (2002)
2001–2002 0.90 1.59 Sulman, Desai, Cook, Saliendra, and Mackay (2009)
2004–2006 0.93 1.33 Jenkins et al. (2007)
2000–2006 0.83 2.05 Urbanski et al. (2007)
2001–2005 0.91 1.30 Vanderhoof, Williams, Pasay, and Ghimire (2013)
2005–2007 0.91 1.59 Schmid, Grimmond, Cropley, Offerle, and Su (2000)
2000–2006 0.89 1.37 Gu et al. (2006)
2000–2006 0.97 0.78 Gough, Vogel, Schmid, Su, and Curtis (2008)
2002–2005 0.96 1.05 Cook et al. (2004)
2003–2005 0.65 1.00 Goulden et al. (2006)
2002–2005 0.70 0.88 Goulden et al. (2006)
2002–2005 0.92 1.49 Goulden et al. (2006)
2003–2004 0.84 1.08 Goulden et al. (2006)
2002–2005 0.89 1.13 Goulden et al. (2006)
2000–2006 0.74 1.58 Goldstein et al. (2000)
2007 0.63 0.95 Dore et al. (2008)
2000–2004 0.88 0.84 Hollinger et al. (2004)
2000–2004 0.69 0.98 Hollinger et al. (2004)
2004–2007 0.91 1.03 Law et al. (2004)
2004–2005 0.69 1.26 Law, Williams, Anthoni, Baldocchi, and Unsworth (2000)
2000–2002 0.94 0.60 Law et al. (2000)
2005–2006 0.95 0.93 Noormets et al. (2010)
2002 0.81 1.79 Sun, Noormets, Chen, and McNulty (2008)
2002–2005 0.92 0.81 Sun et al. (2008)
2005–2006 0.91 1.99 Fischer, Billesbach, Berry, Riley, and Torn (2007)
2005–2006 0.91 2.07 Fischer et al. (2007)
2004–2006 0.68 1.93 Wilson and Meyers (2007)
2002–2004 0.94 0.81 Coulter et al. (2006)
2001–2006 0.92 1.12 Desai, Bolstad, Cook, Davis, and Carey (2005)
2002–2005 0.87 0.69 Goulden et al. (2006)
2002–2005 0.86 0.63 Goulden et al. (2006)
2006 0.67 0.80 Epstein, Calef, Walker, Chapin, and Starfield (2004)
2004–2006 0.73 1.13 Heinsch et al. (2004)

dleleaf forest; GRA: grassland; MF: mixed forest; OSH: open shrublands; WET: wetland;

http://ameriflux.ornl.gov
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2.3. A brief description of the Vegetation Photosynthesis Model (VPM)

The satellite-based VPM (Xiao et al., 2004a, 2004b) uses the product
of light use efficiency (LUE, εg), and absorbed photosynthetically active
radiation by chlorophyll (APARchl) to estimate GPP as follows (Fig. 2):

GPP ¼ εg � APARchl ð6Þ

VPMuses the fraction of absorbed photosynthetic active radiation by
chlorophyll (fAPARchl) to estimate APARchl. The fAPARchl is estimated
from a linear function of EVI where the coefficient α is set to be 1.0
(Xiao et al., 2004a).

APARchl ¼ fAPARchl � PAR ð7Þ

fAPARchl ¼ α � EVI ð8Þ

The light-use-efficiency (εg) in the VPM is a down-regulation of
maximum LUE (ε0) by temperature (Tscalar) and water stress limi-
tation (Wscalar) on photosynthesis as follows:

εg ¼ ε0 � Tscalar �Wscalar ð9Þ

ε0 is a biome-specific parameter and differs for C3 and C4 plants. The
ε0 values are obtained from a lookup-table (LUT) using the MODIS land
cover data. Tscalar is estimated from the equation used in the Terrestrial
Ecosystem Model (TEM) (Raich et al., 1991).

Tscaler ¼
T−T maxð Þ � T−T minð Þ

T−T maxð Þ � T−T minð Þ− T−Topt
� �2 ð10Þ

where Tmin, Tmax and Topt are the minimum, maximum, and optimum
temperatures for vegetation photosynthesis, respectively. These
Fig. 2. Flowchart of the data processing procedures
parameters are biome specific and are also obtained from the LUT. The
limitation from water stress is estimated from LSWI:

Wscalar ¼
1þ LSWI

1þ LSWImax
ð11Þ

LSWImax is themaximum LSWI during the growing season over sev-
eral years. We delineate the LSWImax for plant growing season from the
following steps: (1) during the growing season period pre-defined by
the LST, LSWImax is retrieved as the yearly maximum LSWI. If tempera-
ture-based identification of the growing season fails in the boreal region
where nighttime temperature is always below10°C, the growing season
is set to be June to August. (2) LSWI will have an abnormally high value
if snow exists and a lower value during drought periods. To eliminate
these abnormal values and take the land cover change into consider-
ation,we further calculate the LSWImax using amoving-window statisti-
cal algorithm: we select a window of five years and pick the second
largest maximum LSWI in this period.

3. Results

3.1. Seasonal dynamics of GPP at individual flux tower sites

Fig. 3 shows the seasonal dynamics and interannual variations of
GPPEC and GPPVPM across the 39 flux tower sites. The VPM accurately
predicts the seasonality and magnitude of GPP for most natural veg-
etation (vegetation types other than cropland and cropland/natural
vegetationmosaic in IGBP classification) (Fig. 3). Table 1 summarizes
the correlation between GPPEC and GPPVPM at individual sites over
years. Nearly two thirds of the natural biomes sites have a
RMSE b1.5 g C m−2 day−1. Cropland sites have slightly larger
RMSE values of 2.20–3.06 g C m−2 day−1.

Fig. 4 shows the comparison between GPPEC and GPPVPM at biome
levels. When compared to GPPEC, GPPVPM underestimate by 4% (accord-
ing to regression slope and hereafter) for deciduous broadleaf forests
(DBF), 8% for mixed forests (MF), and 16% for evergreen needleleaf for-
ests (ENF). GPPVPM and GPPEC agree well for closed shrubland (2%) and
open shrubland (4%). For grassland and woody savannas (WSA), the
biases are b8%. When all natural biome sites are combined, GPPVPM is
for vegetation photosynthesis model (VPM).



Fig. 3. Seasonal dynamics and interannual variations of the tower-based (GPPEC) and the modeled (GPPVPM) gross primary production at 39 flux sites at 8-day intervals. The blue lines
represent the GPPEC and the black circles represent the GPPVPM. The ticks on the x-axis represent the first date of the corresponding year. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4.A comparison of the tower-based (GPPEC) and themodeled (GPPVPM) gross primary
production by biome types. Data are pooled across the study period for each biome. The
dash line is 1:1 line and solid lines are linear regression lines forced to pass the origin.
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slightly lower thanGPPEC, approximately 8% (y=0.92x, R2=0.85) (Fig.
4). For cropland sites (cropland and cropland/natural vegetationmosaic
in IGBP classification), GPPVPM is lower than GPPEC by 23% (y = 0.77x,
R2 = 0.82). When all 39 sites are lumped together, the difference be-
tween GPPVPM and GPPEC is approximately 13% (y = 0.87x, R2 =
0.82). The LUE parameter in VPM improves the predictability of GPP,
as represented by the decreased coefficient of determination (R2) in
Fig. 5. Spatial distribution of modeled (A) annual GPPV
the VPM model sensitivity analysis for both natural biomes and all bi-
omes sites when LUE parameter is removed (Fig. A1).

3.2. Spatial patterns of GPPVPM across North America in 2010 at 500-m
spatial resolution

Fig. 5A shows the spatial distribution of annual GPPVPM for 2010
across NA. The highest GPPVPM (N2000 g C m−2 year−1) occurs in
the southernmost tropical regions. GPPVPM decreases along a latitu-
dinal gradient in the eastern region, owing to the decreasing temper-
ature and growing season length. GPPVPM also decreases along a
longitudinal gradient from east (dominated by forest) to west (dom-
inated by grasslands and desert). Fig. 5B shows the spatial distribu-
tion of the maximum daily GPPVPM in 2010. The highest value is
~20 g C m−2 day−1 for the Midwest Corn Belt. The southeastern
U.S. has a relatively low value as compared with the mid-latitude re-
gion (35°N–45°N). The biggest contrast between annual GPPVPM and
maximum daily GPPVPM is found in the tropical and western coastal
regions, where annual GPPVPM is highest while the maximum daily
GPPVPM is moderate.

GPPVPM varies significantly across biomes (Table 2). The most pro-
ductive ecosystem is the evergreen broadleaf forest with an annual
GPPVPM of N2000 g C m−2 year−1. Open shrubland and savannas are
the least productive with an annual GPPVPM b 375 g C m−2 year−1.
Grassland, savannas, and shrublands have relatively high spatial vari-
ance because of the extensive distribution and high sensitivity to soil
water. All natural vegetation contribute about 70% of the total GPPVPM,
with an average of 600.88 g C m−2 year−1. Croplands accounts for
about 27% of the total GPP but with a nearly doubled photosynthetic ca-
pacity (1194.27 g C m−2 year−1) compared with the mean of natural
vegetation. The maximum daily GPPVPM for different biomes varies
from 3.59 to 12.00 g C m−2 day−1. Croplands have the largest GPPVPM
magnitudes (9.94 to 12.00 g C m−2 day−1). Forest ecosystems have a
relatively higher maximum photosynthetic rate (8.79 g C m−2 day−1)
compared with other natural vegetation types (4.65 g C m−2 day−1).
PM and (B) maximum daily GPPVPM for year 2010.



Table 2
The magnitudes and annual sums of simulated gross primary production (GPPVPM) of different biomes in North America (170°–50°W, 20°–80°N) for year 2010.

IGBP class Average annual GPP
(g C m−2 year−1)

Standard deviation of annual
GPP (g C m−2 year−1)

Average maximum daily
GPP (g C m−2 day−1)

Standard deviation of maximum
daily GPP (g C m−2 day−1)

Total (Pg C year−1)

ENF 638.45 255.53 5.90 1.55 1.32
EBF 2038.76 448.32 9.63 1.71 0.16
DBF 1443.95 188.49 11.09 1.47 0.75
MF 1030.24 330.46 8.53 1.78 1.94
OSH 349.30 224.44 3.59 1.31 1.48
WSA 815.81 543.79 6.27 2.29 1.50
SAV 377.65 267.02 4.17 1.27 0.20
GRA 457.50 380.74 4.24 2.59 2.00
WET 539.26 253.98 5.00 1.41 0.21
CRO 1157.99 390.54 12.00 3.09 2.15
CNV 1248.95 317.55 9.94 1.67 1.54

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest; OSH: open shrubland;WSA: woody savannas; SAV: savannas; GRA:
grassland; WET: wetland; CRO: cropland; CNV: cropland/natural vegetation mosaic.
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The inconsistency between annual GPPVPM sums and maximum daily
GPPVPM may be mainly attributed to different growing season lengths
that are affected by temperatures and rainfall.

Fig. 6 shows the frequency distribution of annual GPPVPM and
maximum daily GPPVPM for all pixels in NA and their distribution in
the climate space. N70% of pixels have relatively low productivity,
i.e., annual GPPVPM b 1000 g C m−2 year−1 or maximum daily
GPPVPM b 10 g C m−2 day−1. We also plot the distribution of the 39
flux tower sites in NA based on the annual and maximum daily
GPPEC (Fig. 6). The distribution of the flux tower sites cover the
broad range of maximum daily GPPVPM, andmost of them are located
in regions with moderate annual GPP (1000–1800 g C m−2 year−1).
Fig. 6. The frequency distribution of GPPVPM of the (A) annual GPP and (B)maximumdaily GPP
mean annual temperature (MAT) mean annual precipitation (MAP) (C, D). The blue curves
maximum daily GPP for the flux tower sites are from the 39 sites used in our study. Black
Precipitation data from GPCC (Global Precipitation Climatology Centre) and temperature d
references to color in this figure legend, the reader is referred to the web version of this article
In the two-dimensional climate space described by mean annual
temperature (MAT) and mean annual precipitation (MAP) (Fig. 6C,
D), the flux tower sites distribution covers most of the climate
space. The annual GPPVPM generally increases with MAT mad MAP,
while the daily maximum GPPVPM is highest in moderate MAT and
MAP regions.

3.3. Spatial-temporal comparison between GPPVPM and SIF across NA in
2010 at 0.5 degree spatial resolution

We aggregate the 8-day 500-m GPPVPM estimates to the seasonal
(3-month interval) and 0.5° latitude/longitude grid to compare with
compared to theflux site distribution and their distribution in the climate space defined by
in (A and B) indicate the frequency distribution calculated from Fig. 5. The annual and
crosses in (C and D) represent the location of 39 flux tower sites in the climate space.
ata from NCEP-NARR are used to generate the climate space. (For interpretation of the
.)



Fig. 7.A comparison of seasonal average sun-induced fluorescence (SIF) from the GOME-2
satellite instrument and simulated gross primary production (GPPVPM) during the period
of March 2010 through February 2011. MAM, JJA, SON, and DJF correspond to spring,
summer, fall, and winter, respectively.

162 Y. Zhang et al. / Remote Sensing of Environment 183 (2016) 154–169
the seasonal SIF data. Both GPPVPM and GOME-2 SIF data have strong
seasonal dynamics and spatial variation across NA (Figs. 7, 8).

During spring (March to May), both GPPVPM and GOME-2 SIF are
relatively high in the southeastern part of the United States (Fig. 7),
where forests dominate and plants grow through the spring. Both
GPPVPM and GOME-2 SIF are also high in California, where the Med-
iterranean climate (warm and wet spring and dry summer) is locat-
ed (Ma, Baldocchi, Xu, & Hehn, 2007; Xu & Baldocchi, 2004). In
comparison, the rest of lands with low temperature and/or rainfall
in NA have low GPPVPM and GOME-2 SIF values.

In summer months (June to August), the Corn Belt in mid-
west U.S. and southwestern Canada has the highest GPPVPM and
SIF. This is supported by the eddy flux data: GPPEC for maize is
N25 g C m−2 day−1 during summer, much higher than that of
the forest ecosystems. Overall, summer months contribute N62% of
the annual GPP in NA, 42% of which come from Canada and 45%
from the conterminous U.S. SIF data also show the highest values
in the Corn Belt and lowest in the western and northern regions,
consistent with the GPPVPM.

In the fall (September to November), both GPPVPM and SIF drop
substantially in the mid-west region due to crop harvesting. Similar
to spring, the high photosynthesis rate also corresponds to a long
growing season in the southeastern U.S., but the value is smaller
than spring. The eastern and western coasts of Mexico as well as
Cuba still fix carbon at a rate of N5 g C m−2 day−1. In Alaska and
northern Canada, all vegetation goes to dormancy, and both GPPVPM
and SIF values are close to 0. These spatial patterns are also evident in
the SIF data.

During the winter (December through February), only the very
southern part of the U.S., California, and coastal regions of Mexico and
Cuba have moderate GPPVPM and SIF values. All the other regions do
not show any sign of photosynthesis activities, and both GPPVPM and
SIF values are close to zero.

4. Discussion

4.1. The relationship between SIF and GPP

SIF is emitted during the vegetation photosynthetic process.
Absorbed energy by chlorophyll is partitioned into SIF, photochem-
ical quenching (PQ, energy used for photosynthesis), non-photo-
chemical quenching (NPQ, energy partitioned to heating), and
efficiency loss (Baker, 2008). Previous studies have shown that SIF
is positively correlated with PQ when light is moderate or high or
environmental stress exists (Flexas, Briantais, Cerovic, & Medrano,
2000; Lee et al., 2015; Porcar-Castell, Bäck, Juurola, & Hari, 2006;
Soukupová, Cséfalvay, Urban, & Košvancová, 2008). However, the
relationship between GPP and SIF emission at far-red peak (SIF740
used in our study) is also affected by the SIF contribution from pho-
tosystem II and photosystem I, alternative sinks of energy, photo-
respiration, internal CO2 concentration of leaves and enzyme
activities, etc. (Porcar-Castell et al., 2014). Although SIF measure-
ments from satellite provide a direct and independent estimations
of photosynthetic activity which is different from reflectance
based vegetation indices, the GPP-SIF relationship still needs inten-
sive investigation.

Several studies (Joiner et al., 2014; Wagle, Zhang, Jin, & Xiao,
2016; Zhang et al., 2014) have reported on the direct comparison be-
tween satellite-derived SIF data (0.5° grid cell) and in situGPPEC from
flux sites that often have footprint sizes of a few hundreds of meters,
but such comparisons is problematic owing to spatial mismatches
and heterogeneity due to mixed land cover types within a given
0.5° grid cell (Zhang et al., 2014). In this study, the VPM simulations
are aggregated to the same spatial resolution as the GOME-2 SIF data.
Fig. 8 shows the correlation between GPPVPM and the SIF data for the
four seasons. In spring, summer, and fall, GPPVPM shows a very high
correlation with SIF. The coefficient of determination ranges from
0.74 to 0.86, and the GPPVPM-SIF correlation increases with the in-
crease in daily GPP or SIF value (from early to peak growing season).
This high spatial correlation confirms our comparison in Section 3.3
and can be further explained by the APARchl used in the VPM. Both
APARNDVI (NDVI × PAR) and APARfPAR (fPAR × PAR) have lower cor-
relation with SIF compared with APARchl; an obvious saturation can
be found in summer where SIF continues to increase while APARNDVI

and APARfPAR tend to saturate. The regression slope between APARchl

and SIF are also more stable during the growing season (2.82±0.13).
As SIF is reemitted from the photosystem II, the higher correlation
between SIF and APARchl also suggests that EVI can be a good proxy
of light absorbed by chlorophyll. In the winter, however, the correla-
tions between SIF and GPPVPM and APAR are much weaker mostly
due to the very low SIF signal and relatively lower signal-to-noise
ratio. We also calculate the regression between GPPVPM and SIF for
points with GPPVPM N 1 g Cm−2 day−1 (to eliminate some low values
with relatively higher bias during the non-growing season). The
range of the regression slopes are narrower when only data for the
period of GPPVPM N 1 g C m−2 day−1 are used as compared to all
data points (SDslope = 0.42 vs. 0.74).

4.2. Comparison of SIF and GPP estimates in North America from several
models

A number of models have reported annual total GPP in NA
(Huntzinger et al., 2012; Xiao et al., 2014). The annual GPPVPM is
13.53 Pg C in 2010. We further compared GPPVPM with GPP from six
other models (MODIS PSN, MPI-BGC, LPJ, LPJ-GUESS, ORCHIDEE, and
VEGAS) (Fig. 9). The VPM-based GPP estimates are close to the average



Fig. 8.Relationship between SIF and GPPVPM (A, E, I, M), APARchl (EVI × PAR) (B, F, J, N), APARNDVI (NDVI × PAR) (C, G, K, O) and APARfPAR (fPAR× PAR) (D, H, L, P) for four seasons (by row
from first to fourth: spring, summer, autumn,winter) inNorth America in 2010. EVI andNDVI are frommonthly 0.05°MOD13C1 C5, fPAR is from8-day 1 kmMOD15A2C5, all ofwhich are
aggregated to seasonal and 0.5-degree spatial resolution. Black lines are regression for all the points, and the red lines are the regressions between GPPVPM and SIF with
GPPVPM N 1 g C m−2 day−1.
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of these six models (15.75 Pg C year−1) (Table 3). Three process-based
models (LPJ, LPJ-GUESS, and ORCHIDEE) predict very high GPP for the
southeastern U.S., which may be caused by different approaches they
employed (enzyme kinetic vs. LUE).

Because SIF is directly retrieved from satellite and has a very good
correlation with data driven model-based GPP (Frankenberg et al.,
2011; Wagle et al., 2016), we use SIF as a reference to compare the
spatial variations in GPP of all models. ORCHIDEE, PSN, MPI-BGC,
and VPM show high consistency with SIF data. The major difference
is the relative underestimation at the Corn-Belt and overestimation
in the western coast along the U.S./Canada border in ORCHIDEE,
PSN, and MPI-BGC. Recent studies reveal that cropland, especially
maize in the U.S., makes a large contribution to the seasonal swing
of atmospheric CO2 concentration (Gray et al., 2014; Zeng et al.,
2014). The high GPP values in this region are often underestimated
by models (Guanter et al., 2014). Beer et al. (2010) also suggest
that given the limited C4 vegetation flux data availability, great un-
certainty remains in estimating the contribution of C4 plants while
upscaling eddy flux observations. A similar issue is also found in a
study focused on the conterminous U.S. (Xiao et al., 2010), which
may explain the underestimation of the regional GPP sums. GPPVPM
and SIF data show similar spatial patterns for the mid-western
Corn Belt (r = 0.87, p b 0.001) where a previous study showed SIF
at a monthly scale has a high correlation with GPP (Guanter et al.,
2014); this also supports that the spatial variation of GPPVPM for
croplands is to some degree an improvement over the other six
models.

Several previous studies indicate that the relationships between
GPP and SIF should be different across biomes (Damm et al., 2015;
Guanter et al., 2012; Guanter et al., 2014; Parazoo et al., 2014;
Verrelst et al., 2015). This ecosystem-dependent GPP-SIF relation-
ship is determined by different SIF contribution from both photo-
system I and photosystem II, uncertainty in NPQ, and structural
interference of SIF leaving the canopy (Damm et al., 2015;
Verrelst et al., 2015). Here we compare SIF with GPP estimates
from three diagnostic models (VPM, MPI-BGC, and MODIS PSN)
and APARchl, as well as the relationship between SIFyield (SIF/
APARchl) and LUE (Fig. 10). Being consistent with a previous study



Fig. 9. Comparison of annual gross primary production (GPP) from different LUE-based
models (A, C), data-driven model (D), process-based models (E, F, G, H), and with sun-
induced fluorescence (SIF) (B). Data are shown for the year 2010.
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at site level (Yang et al., 2015), we also find that SIF contains the in-
formation of LUE, represented by a high correlation between SIFyield
(SIF/APARchl) and LUEVPM (Fig. 10E). This also partially supports the
GPP-SIF relationship. However, due to the spatial inconsistency, we
did not directly compare GOME-2 SIFyield with LUEEC, more canopy
or ecosystem level SIF measurement from in situ or airborne spec-
trometers will enable this kind of comparison in the near future.
In terms of inter-model comparison, VPM and MPI-BGC show
higher average R2 (0.86 and 0.89, respectively) for individual bi-
omes than does MODIS PSN (0.83). The data points are also more
scattered in the MODIS PSN than in other two models. Different
biome types also show distinct differences in slopes (4.03–8.9 for
VPM, 3.73–7.83 for MPI-BGC, and 2.76–11.12 for MODIS PSN). For
themost highly productive biomes (average SIF N 1mWm−2 nm−1-

sr−1), the correlations between predicted GPP and SIF are very
high (R2 N 0.95) except for EBF; this may be caused by cloud and/
or aerosol contamination of the satellite data. The range of slopes
for these biomes also shows less variation (4.60–5.55 for VPM,
Table 3
Annual gross primary production (GPP) of North America (170°–50°W, 20°–80°N) esti-
mated from different models for year 2010.

Models Annual GPP (Pg C year−1) Reference

LPJ 22.23 Sitch et al. (2003)
LPJ-GUESS 19.84 Smith, Prentice, and Sykes (2001)
ORCHIDEE 17.52 Krinner et al. (2005)
VEGAS 11.35 Zeng et al. (2005)
MODIS GPP 13.13 Zhao et al. (2005)
MPI-BGC 12.70 Jung et al. (2011)
VPM 13.53 This study
4.02–5.72 for MPI-BGC, and 3.60–6.02 for MODIS PSN). In contrast,
the less productive regions usually have lower regression coeffi-
cients and more variable slopes. This may be partially due to the
higher relative error for the GOME-2 SIF data (Joiner et al., 2013)
and GPP models. SIF retrievals from later satellites (OCO-2, FLEX -
Fluorescence Explorer, Sentinel-5 Precursor) will have better accu-
racy (Frankenberg et al., 2014; Guanter et al., 2015; Kraft et al.,
2013) and can be used to improve and benchmark GPP for land
models (Lee et al., 2015; Luo et al., 2012; Zhang et al., 2014).

4.3. Sources of uncertainty for VPM simulations in North America

Maps of land cover types affect GPP estimates as the LUE param-
eter used in the model varies with biomes. In this study, the MOD12
land cover dataset lists croplands as one category and does not dis-
tinguish between C3 and C4 crops. Both C3 and C4 crops have differ-
ent photosynthetic pathways and light use efficiency (Kalfas et al.,
2011; Yuan et al., 2015): C4 crops (e.g., maize) have a higher GPPEC
than do C3 crops (Fig. 3). Thus, the LUE parameterization of crop-
lands for each year depends upon our knowledge of crop types and
rotation. For VPM simulations at the continental scale, there are
four options to address this problem in a MODIS cropland pixel: (1)
assume 100% C3 plants, (2) assume 100% C4 plants, (3) assume
C3+ C4mixing ratio as 50% each, and (4) use known C3+C4mixing
ratio from other data sources (in situ data, or other maps). Because
there is no yearly map of C3/C4 mixing ratio across NA, we simply
chose the third option in this study. Therefore, GPPVPM would either
overestimate GPP for C3 plants (soybean, wheat, etc.) or underesti-
mate for C4 plants (corn, sugar cane, etc.) in those pure pixels. In
those C3/C4 mixed pixels, however, these artifacts (under- or over-
estimation) can be partially alleviated. For example, both maize
and soybean are grown in rotation at the US-Bo1 site within a 50 m
radius, but within a 500 m radius of the flux tower site, corn and soy-
bean areas have a mixing ratio of 50% each over the years. The
GPPVPM, driven by averaged LUE for C3 and C4 crops, captures both
the seasonality and the magnitude at this site (Fig. 11A). For pure
pixels, VPM would provide better results if a specific crop type is
given and an appropriate LUE value is used. We use the LUE value
for C4 plants at the US-Ne1 site where maize is grown throughout
the period (Fig. 11B). This modification greatly improves the estima-
tion of GPP, with an RMSE reduces from 3.06 to 2.32 g C m−2 day−1

and the slope increases from 0.65 to 0.86.
In our study, all croplandflux tower sites are located in themid-west

Corn Belt and altogether we have 16 corn years and 11 soybean years.
Aswe use an average LUE of C3 andC4 for croplands, themodelmay un-
derestimate GPP at the site scale owing to more corn years (Fig. 4). At a
regional scale, the biasmainly depends on the C3 and C4 cropmixing ra-
tios within individual pixels. In the U.S. Midwest where C4 crops (e.g.,
maize) are dominant, the VPM simulation may underestimate cropland
production while in California or the Mississippi River Basin, where C3
crops are dominant, the VPM simulation may overestimate. Therefore,
the lack of crop plant functional type (C3 and C4) is likely the largest
source of uncertainty in the GPPVPM. This clearly highlights the need to
generate annual maps of plant functional types (C3 and C4) in NA in
the near future. In addition, the mismatch between the flux tower foot-
print and the MODIS pixel, and the land cover fragmentation within
each MODIS pixel are also critical issues when using EC data for model
validation. All flux towers should be evaluated using footprint models
and high resolution satellite images to provide the representativeness
for the MODIS pixel (Chen et al., 2012).

Image data quality is always an important issue for the applica-
tion of remote sensing. In this study, we use the vegetation indices
calculated directly from the MODIS surface reflectance product.
These indices are subject to atmospheric contamination (i.e., clouds,
aerosols) and often result in a lower-than-normal value for EVI, es-
pecially in those regions where cloud and aerosol are persistent



Fig. 10.A comparison for relationship between GPPVPM and SIF (A), GPPMPI and SIF (B), GPPPSN and SIF (C), APARchl (EVI × PAR) and SIF (D), SIFyield (SIF/APAR) and LUEVPM (E) for different
biome types in North America in 2010. For each month each biome type, a value is given by spatially averaging all the grid cells with in this biome type.
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(boreal and tropical regions in our study). The effect of the atmo-
spheric contamination can be partially eliminated through a gap-
fill method. Fig. 12 shows the comparison between the gap-filled
and no gap-filled results. Obvious cloud contamination is marked in
the black ellipse in Fig. 12A, C. The gap-fill method used in our
study not only temporally interpolates the low values that are
marked as cloud or aerosol contaminated by the quality control
layer, but also removes the noises caused by other factors. Some



Fig. 11. Seasonal dynamics and interannual variations of the tower-based (GPPEC) and themodeled (GPPVPM) gross primary production at two flux tower sites at 8-day intervals at amaize/
soybean rotation site (US-Bo1) (A) and a continuous maize site (US-Ne1) (B). Blue lines represent estimated GPP from flux tower, yellow circles represent the present simulation result
using the original LUE (LUE_O) and brown circles represent improved simulation result using an alternative LUE (LUE_A) for C4 plant. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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extremely high value data (dark green dots) in Fig. 12A are also tem-
porally smoothed, as shown in Fig. 12B. The use of this gap-fill meth-
od also results in different regional GPP estimates. The GPP estimate
without the gap-fill method shows a total GPP of NA in 2010 as
13.23 Pg C, while the gap-filled method leads to an annual GPP esti-
mation of 13.53 Pg C. In addition, the GPP simulations with the gap-
filled processing are more stable when conducting interannual com-
parisons or trend analyses.

Climate data input is another potential uncertainty source for VPM
simulation. Previous studies show that VPM accurately simulates GPP
at flux tower sites, when driven by in situ (site-specific) meteorological
data and parameters (Jin et al., 2013; Kalfas et al., 2011; Wagle et al.,
2014; Xiao et al., 2004a; Xiao et al., 2004b). As radiation is one of the di-
rect inputs to model GPP, the accuracy of radiation directly influences
GPP simulation. Recent studies which employ different models
(MODIS PSN, EC-LUE) to investigate the performance of multiple mete-
orological datasets in estimating regional GPP report that the NCEP
product overestimates radiation as compared with meteorological sta-
tions in U.S. and China (Cai et al., 2014; Zhao et al., 2006). Jin et al.
(2015) assesses the feasibility of using large scale reanalysis meteoro-
logical data (NCEP-NARR) to drive VPM at cropland flux tower sites,
and the resultant GPPVPM agrees well with GPPEC at those sites. Our val-
idation at the site level shows that VPM accurately simulates GPP across
Fig. 12. Comparison between no gap-filled and gap-filled enhanced vegetation index (EVI)
and the correspondingmodeled gross primary production (GPPVPM). The low value in (A)
and (C) are marked out using ellipses. The scene is from the tile h11v03 during the mid-
growing season on August 13th, 2010.
different natural biome types in NA using the regional reanalysis mete-
orological data and biome specific parameters, suggesting that the
recalibrated NCEP-NARR radiation product can be used to estimate re-
gional GPP effectively in NA.

5. Conclusions

In this study, we use VPM, climate reanalysis data, andMODIS prod-
ucts (vegetation indices, land cover, and LST) to simulate GPP of North
America. GPPVPM agrees well with GPPEC at individual flux tower sites
and the GOME-2 SIF data across North America. The comparison be-
tween SIF and GPPVPM showed very high spatial-temporal consistency
during the growing season, mostly due to the close relationship be-
tween SIF and APARchl. The quality of GOME-2 SIF data may limit its ap-
plication for evaluating the seasonal variation of GPP for very low
productive biome types. The results from this study clearly demonstrate
the potential of VPM for estimating GPP at the continental scale, and
highlights the value of GOME-2 SIF data for evaluation of various LUE-
based and process-based GPP models. The resultant high spatial and
temporal resolution GPPVPM dataset in North America will be provided
to the public,which can be further used in awide variety of applications,
especially in those studies related to trend analysis, regional disturbance
evaluation, model comparison, and the carbon cycle under global cli-
mate change.
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Appendix A
Fig. A1. (A) A comparison betweenGPPEC and APARchl for all 39 sites using 8-day data. (B) comparison between the coefficient of determination (R2) betweenGPPEC vs. GPPVPM, andGPPEC

Table A1
Biome specific lookup-table (LUT) used in the VPM model.

IGBP class ENF1 EBF2 DNF DBF1 MF2 CSH2 OSH2 WSA2 SAV2 GRA2 WET CRO3 NVM

Tmin (°C) −1 2 −1 −1 −1 −1 1 −1 1 0 −1 −1 0
Topt (°C) 20 28 20 20 19 25 31 24 30 27 20 30 27
Tmax (°C) 40 48 40 40 48 48 48 48 48 48 40 48 48
ε0 (g C m−2 day−1/W m−2) 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.108 0.078

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous broadleaf forests; MF: mixed forest; CSH: closed shrublands; OSH:
open shrublands; WSA: woody savannas; SAV: savannas; GRA: grassland; WET: wetland; CRO: cropland; NVM: cropland/natural vegetation mosaic.
We use a similar temperature limitation from the Terrestrial Ecosystem Model and the Tmin, Topt, Tmax used in this table are given by 1Aber, Reich, and Goulden (1996), 2McGuire et al.
(1992) and 3Wagle et al. (2015) and Kalfas et al. (2011). For some biome types (DNF, WET, NVM) which we did not find reference for temperature parameters, we use parameters
from similar ecosystems (e.g. ENF for DNF and WET, GRA for NVM). ε0 for C3 plants are estimated from the Wagle et al. (2014), ε0 for C4 crops is from Kalfas et al. (2011). Cropland is
regarded as the half-half C3/C4 therefore uses an average value.
vs. APARchl for individual sites.
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