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A B S T R A C T

Accurate phenology characterization is of great importance for measuring ecosystem dynamics, especially for
carbon and water exchange between land and the atmosphere. Vegetation indices (VIs), calculated from land
surface reflectance, are widely used to estimate phenology from the leaf and canopy structure perspective. Gross
Primary Production (GPP) and solar-induced chlorophyll fluorescence (SIF) are used to estimate phenology from
the canopy functional (physiological) perspective. To what degree are the spring phenology estimated from these
different perspectives consistent with each other? In this study, we evaluated the consistency of the start of the
growing season (SOS) in spring for snow-covered evergreen needleleaf forests (ENF) and deciduous broadleaf
forests (DBF) using three vegetation indices, in-situ GPP data from the eddy covariance flux towers (GPPEC), GPP
data from the Vegetation Photosynthesis Model (GPPVPM), and SIF data from the GOME-2. Results showed that
SOSNDVI dates were much earlier than SOS dates from EVI (SOSEVI), land surface water index (LSWI) (SOSLSWI),
GPP (SOSGPP; SOSGPP-EC, SOSGPP_VPM) and SIF (SOSSIF) for both snow-covered evergreen needleleaf forest (ENF)
and deciduous broadleaf forest (DBF). SOSLSWI dates were more linearly correlated with SOSGPP and SOSSIF than
SOS dates from NDVI and EVI. At ENF sites, SOSLSWI dates were 17 (±27) days later and SOSEVI were 25 (±34)
days later than SOSGPP_EC dates. At DBF sites, SOSLSWI and SOSEVI dates were 1-week (± 13 days) later than
SOSGPP_EC dates. In the snow-covered regions at mid- to high-latitude in the Northern Hemisphere, SOSLSWI dates
were 2˜3 weeks (± 5 days) later than those of SOSGPP_VPM and SOSSIF for both ENF and DBF. Our results clearly
highlight the need for further investigation of NDVI-based SOS dates, which were likely affected by snowmelt in
snow-covered forests, and the potential of LSWI for tracking the effects of snow on SOS dates. Estimations of SOS
dates in snow-covered forests should consider the effects of both snow cover and temperature on leaf emergence
(green-up) and gross primary production.

1. Introduction

Vegetation (leaf and canopy) phenology significantly affects carbon
and water cycles (Hollinger et al., 1999; Peñuelas and Filella, 2009;
Richardson et al., 2010) and is often characterized from the perspective
of leaf and canopy structure (e.g., leaf flush, green-up) or from the
perspective of leaf and canopy function (e.g., photosynthesis or gross
primary production (Churkina et al., 2005; Ma et al., 2007; Piao et al.,
2007; Richardson et al., 2010). Accurate measurements and the com-
parison of vegetation phenology from the structural and functional
perspectives are significant for improving terrestrial models and ex-
ploring ecosystem carbon-water interaction and variability (Wu et al.,

2012; Zhang et al., 2003).
Over the past decades, optical remote sensing has been used to

identify vegetation phenology and land surface phenology (Matsumoto
et al., 2003; Piao et al., 2007; Wu et al., 2013; Zhang et al., 2013).
Vegetation indices (e.g., normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI), land surface water index
(LSWI)) and leaf area index (LAI) provide information on the dynamics
of canopy structure and are the primary indices used for estimating the
start and end of the growing season (SOS, EOS) from the perspective of
canopy structure (Hmimina et al., 2013; Sims et al., 2006; Xiao et al.,
2004b; Zhang et al., 2003). The SOS dates estimated by the vegetation
indices derived from the Moderate Resolution Imaging
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Spectroradiometer (MODIS) varied among land cover types, soil
moisture conditions, and even extreme climate events (Liu et al., 2016;
Peng et al., 2017a; Shen et al., 2014b; Wu et al., 2014). Our under-
standing of the unique advantages of each vegetation index in esti-
mating spring phenology and the differences among the VI-based in-
dicators of phenology across vegetation types is still limited (Balzarolo
et al., 2016; Chang et al., 2018; Reed et al., 2009).

Gross primary production (GPP) of forests (Baldocchi et al., 2001;
Zhang et al., 2006) is also used for estimating SOS and EOS from the
perspective of canopy function. Several studies reported that canopy
structure phenology from satellites were consistent with the phenology
from flux tower GPP observations (Balzarolo et al., 2016) and NEE
(Wang et al., 2016), and the net carbon uptake period (CUP) from NEE
has been widely used for validation of land surface phenology derived
from satellite data analysis (Peng et al., 2017b; Verma et al., 2014; Xiao
et al., 2008; Zhang et al., 2016b). However, some other studies reported
that no single source of canopy phenology data was able to accurately
describe annual patterns of phenology from the eddy flux GPP or NEE
data, and the differences are inconsistent across vegetation types
(Garrity et al., 2011; Wu et al., 2017). The contrary conclusions could
have been caused by snow-cover at the selected sites, which was not
addressed in these studies. Thus, further investigation into the con-
sistencies and differences in satellite-based indicators of vegetation
canopy structural and functional phenology is needed.

Solar-induced chlorophyll fluorescence (SIF) emitted by vegetation
(Guanter et al., 2014; Sun et al., 2018; Wang et al., 2016) was recently
used to estimate SOS and EOS from the perspective of canopy function
(Joiner et al., 2014). SIF is a kind of photosynthesis-related energy and
is directly detected by satellite sensor instead of being modeled based
on indirectly satellite datasets (Joiner et al., 2013; Sun et al., 2018).
Phenology studies of SIF can help us better understand seasonal dy-
namics of photosynthesis (Jeong et al., 2017; Walther et al., 2016) and
to assess the uncertainties in modeled GPP products (Guanter et al.,
2014; Wang et al., 2016). A number of studies have shown that GPP is
closely related to SIF (Li et al., 2018; Walther et al., 2016; Zhang et al.,
2016b). However, the relationship between GPP and SIF varies from the
leaf scale to the canopy scale, and also depends on the time frame
(diurnal, daily, seasonal) and biome type (Li et al., 2018; Zhang et al.,
2016a). The consistency between the functional phenology metrics
derived from GPP and SIF has not yet well studied. Furthermore,
structure-based spring phenology dates derived from NDVI, EVI, and
LSWI have not yet been compared with phenology from SIF. A com-
prehensive study is urgently needed for comparing the SOS dates from
vegetation indices (NDVI, EVI, LSWI), GPP, and SIF.

Phenology studies in snow-covered deciduous and evergreen forests
at mid- to high-latitude regions are complex because of snow cover
(Botta et al., 2000; Julien and Sobrino, 2009; Zhang et al., 2006). SOS
date estimates using vegetation indices are always biased by snow
cover, which affects satellite reflectance (Chen et al., 2015; Delbart
et al., 2006; Wang et al., 2017; Zhang, 2015). Decoupling the snowmelt
signal from vegetative growth is essential for accurate phenology esti-
mation. The effects of snow on spring phenology (SOS estimates) by
vegetation indices, GPP, and SIF are not fully investigated. The con-
sistency of spring phenology of snow-covered forests from the per-
spectives of canopy structure (VIs) and function (GPP, SIF) is not yet
well known. Furthermore, as air temperature is the most important
environmental factor controlling both SOS (Ensminger et al., 2004; Piao
et al., 2015; Wang et al., 2015) and snowmelt processes (Groendahl
et al., 2007), there is also a need to understand the effect of air tem-
perature on vegetation indices, GPP and SIF, which would in turn affect
their SOS estimates.

In this study, we investigated the consistency of SOS estimates of
snow-covered evergreen needleleaf forests (ENF) and deciduous
broadleaf forests (DBF) from the perspectives of canopy structure (ve-
getation indices) and function (GPP and SIF). We used two greenness-
related vegetation indices (NDVI and EVI) and one water-related

vegetation index (LSWI) from MODIS images, GPP data from the eddy
flux tower sites (GPPEC), GPP data from the Vegetation Photosynthesis
Model (GPPVPM), and SIF data from the GOME-2. We addressed the
following questions: (1) what is the consistency of SOS dates from VIs
(NDVI, EVI, and LSWI) and from GPPEC at snow-covered ENF and DBF
eddy flux tower sites? (2) what is the consistency of SOS dates from VIs
(NDVI, EVI, and LSWI), GPPVPM, and SIF at snow-covered ENF and DBF
forests across the mid- to high-latitude North Hemisphere? (3) what are
the responses of VIs, GPP, and SIF to daytime air temperature during
the initial growth stage of snow-covered ENF and DBF? We first eval-
uated the consistency of SOS from vegetation indices (NDVI, EVI, and
LSWI) and GPP (GPPEC, GPPVPM) at the site level using snow-covered
forest flux tower observations, and then explored the consistency of SOS
of snow-covered ENF and DBF from VIs, GPPVPM, and SIF data at re-
gional scale for snow-covered ENF and DBF in the mid- to high-latitude
Northern Hemisphere. The relationships between various data sources
and air temperature were also analyzed to show the reliability of SOS
dates estimated from various datasets at snow-covered ENF and DBF
sites.

2. Materials and methods

2.1. Study sites

We selected 17 forest eddy flux tower sites (8 ENF and 9 DBF sites)
from the FLUXNET-2015 dataset (http://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/) (Table 1). Site selection was based on the fol-
lowing criteria: (1) sites must have more than 8 years of observations
between 2000 and 2014; (2) sites are relatively homogeneous land
cover within the pixels of the MODIS MOD09A1 product (500m spatial
resolution) (Fig. S.1); and (3) sites have snow cover in winter and
spring, according to the site description and MODIS normalized dif-
ference snow index (NDSI). MODIS NDSI is calculated from green band
and short wave infrared band, and is used to assess snow conditions.
The MODIS snow-mapping algorithm identifies an observation as snow
when NDSI value is equal to or greater than 0.4 (with more than 50%
snow cover) (Hall et al., 1995, 2002; Zhang et al., 2003). In our study,
only those years identified to have snow cover during the winter
(previous December, January, and February) to spring (March, April,
and May) for each site were used. For the flux towers listed in Table 1,
years with no snow cover were removed. The removed years for the
used sites include RU-Fyo (2005, 2008), DK-Sor (2003, 2004, 2007,
2008, 2012, 2014), DE-Hai (2004, 2005, 2007, 2008, 2009, 2012), FR-
Fon (2005, 2007–2014), US-Wcr (2000, 2012), US-Ha1 (2000,
2002–2007, 2010–2012), IT-Col (2000–2002, 2007, 2008, 2011, 2012,
2014), and US-MMS (2000, 2002–2006, 2008, 2009, 2011–2013).

2.2. Data

2.2.1. Climate and GPP data from the CO2 flux tower sites
The FLUXNET eddy covariance network measures ecosystem CO2,

heat fluxes, and meteorological variables at sites across the globe. The
FLUXNET-2015 eddy covariance GPP (GPPEC) datasets were calculated
from gap-filled net ecosystem exchange (NEE) data using the standard
flux-partitioning method (Lasslop et al., 2010). The GPP product
(GPP_DT_VUT_REF) used in this study was calculated with the variable
USTAR filtering approach and daytime partitioning method (Kumar
et al., 2016). Daily GPP datasets were used in this study to determine
SOS. Daily average daytime air temperature datasets (TA_F) from
FLUXNET-2015 were also used to explore the relationship between
temperature and phenology. Daily observations at the flux tower sites
were aggregated to an 8-day and monthly temporal resolutions to
match the MODIS VIs and GOME-2 SIF data, respectively.

2.2.2. MODIS surface reflectance data and vegetation indices
The MODIS surface reflectance product MOD09A1 V6 is provided
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with 500-m spatial resolution and 8-day interval temporal resolution
(Vermote, 2015). The MOD09A1 dataset was used to calculate four
spectral indices including NDSI (Hall et al., 1995, 2002), NDVI (Rouse
et al., 1974), EVI (Huete et al., 2002), and LSWI (Xiao et al., 2004a) (see
Eqs. (1)–(4)). MODIS bands were used in these equations including: red
band (RED) (620–670 nm), near infrared band (NIR) (841–876 nm),
blue band (BLUE) (459–479 nm), green band (GREEN) (545–565 nm),
and short wavelength near infrared band (SWIR) (1628–1652 nm).
NDSI was used to determine snow cover at 500-m spatial resolution.
NDSI values for mid- to high-latitude NH are shown in Fig. 1 a.

Vegetation indices (NDVI, EVI, and LSWI) at the flux sites were
calculated from MOD09A1-based bands reflectance products. Prior to
calculating the phenology metrics, we processed the time-series VIs
using the following three steps. First, observations affected by cloud
cover were identified by using the quality assurance (QC) flags for
cloud state (“00″ flags indicate clear sky), and were gap-filled using the
multi-year mean of good observations for that day. Second, we used the
Best Index Slope Extraction (BISE) method to detect bad-quality ob-
servations unidentified in the QC layer in NDVI time series, and the bad
observations were replaced with the mean value of its nearest two good
observations (Viovy et al., 1992; White et al., 1997; Xiao et al., 2009).
Third, we used the SeG filter method to remove abnormal values in the
time series data (Chen et al., 2004; Savitzky and Golay, 1964).

= −
+

NDSI GREEN SWIR
GREEN SWIR (1)

= −
+

NDVI NIR RED
NIR RED (2)

= × −
+ × − × +

EVI NIR RED
NIR Red BLUE

2.5
( 6 7.5 1) (3)

= −
+

LSWI NIR SWIR
NIR SWIR (4)

2.2.3. GPP data from the VPM simulations
We used the GPP data product simulated from Vegetation

Photosynthesis Model (VPM) (GPPVPM) at 500-m spatial resolution.
VPM estimates GPP as a function of photosynthetically active radiation
(PAR) absorbed by chlorophyll (APARchl) and light use efficiency (εg)
(Xiao et al., 2004a). Two basic equations for LUE-based VPM are shown
as Eqs. (5) and (6). The global GPPVPM dataset (VPM GPP V20) used
different ε0 values for C3 and C4 vegetation (Zhang et al., 2017). In
VPM model simulations, MODIS-based EVI and NCEP reanalysis climate
data were used. When compared with GOME-2 SIF, the 500-m GPPVPM
datasets were aggregated from 8-day to monthly and to 0.5° (latitude
and longitude).

= ××GPP ε FPAR PARVPM g chl (5)

= × ×ε ε T Wg scalar scalar0 (6)

where εg is light use efficiency, FPARchl is the fraction of PAR absorbed
by chlorophyll, and PAR is the photosynthetic active radiation. GPPVPM
uses EVI to estimate FPARchl and εg is estimated using maximum light

Table 1
Description of FLUXNET sites, Elevation, Annual temperature, precipitation, and Plant functional types (DBF-Deciduous broadleaf forest, ENF-Evergreen Needleleaf
forest).

Site ID Latitude (decimal
degrees)

Longitude (decimal
degrees)

Elevation (m) Plant functional
type

Mean annual Temperature
(degree C)

Mean annual Precipitaion
(mm)

Observed years

FI-Sod 67.3619 26.6378 180 ENF −1 500 2001–2014
FI-Hyy 61.8475 24.295 181 ENF 3.8 709 2000–2014
RU-Fyo 56.4615 32.9221 265 ENF 3.9 711 2000–2014
CA-Man 55.8796 −98.4808 259 ENF −3.2 520 2000–2008
CA-Qfo 49.6925 −74.3421 382 ENF −0.36 962 2003–2010
CH–Dav 46.8153 9.8559 1639 ENF 2.8 1062 2000–2014
IT–Ren 46.5869 11.4337 1730 ENF 4.7 809 2000–2013
US–GLE 41.3665 −106.2399 3197 ENF 0.8 1200 2004–2014
US–NR1 40.0329 −105.5464 3050 ENF 1.5 800 2000–2014
DK–Sor 55.4859 11.6446 40 DBF 8.2 660 2000–2014
DE–Hai 51.0792 10.453 430 DBF 8.3 720 2000–2012
FR–Fon 48.4764 2.7801 103 DBF 10.2 720 2005–2014
US–WCr 45.8059 −90.0799 520 DBF 4.02 787 2000–2014
US-UMd 45.5625 −84.6975 239 DBF 5.83 803 2007–2014
US–UMB 45.5598 −84.7138 234 DBF 5.83 803 2000–2014
US–Ha1 42.5378 −72.1715 340 DBF 6.62 1071 2000–2012
IT–Col 41.8494 13.5881 1560 DBF 6.3 1180 2000–2014
US–MMS 39.3232 −86.4131 275 DBF 10.85 1032 2000–2014

Fig. 1. Spatial distributions of (a) MODIS normalized difference
snow index (NDSI) in January in 2010; (b) evergreen needleleaf
forest (ENF) and deciduous broadleaf forest (DBF) from MODIS
land cover product in 2010; and (c) snow-covered ENF (773
pixels) and DBF (334 pixels) (NDSI > 0.4) in mid- to high-lati-
tudes of Northern Hemisphere.
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use efficiency (ε0) downregulated by temperature (Tscalar) and water
stress (Wscalar).

2.2.4. GOME-2 SIF data
We used sun-induced chlorophyll fluorescence (SIF) retrievals from

the MetOp-A satellite. The GOME-2 MetOp-A satellite has an overpass
about 9:30 local solar time and SIF values were retrieved at about
740 nm (Joiner et al., 2013). The GOME-2 instruments have a footprint
of about 40 km×80 km before July 2013, and a 40 km×40 km foot-
print after July 2013. We used the GOME-2 SIF V27 level 3 product
from 2007 to 2014 at a spatial resolution of 0.5° × 0.5° and monthly
resolution.

2.2.5. Land cover data
We used the MODIS land cover dataset (MCD12C1 V051 yearly

0.05°) in 2010 to represent the land cover type (IGBP land cover clas-
sification system) throughout the entire study period. We used the
majority method to assign the final land cover type when we ag-
gregated the land cover data from 0.05° to 0.5° resolution. Based on
MODIS NDSI distribution and land cover data, the snow-covered ENF
and DBF pixels were identified at northern mid- to high-latitude regions
(30 °N-90 °N) (Fig. 1 b). Then, we calculated monthly and average
NDVI, EVI, LSWI, GPPVPM, and SIF for all snow-covered ENF and DBF
pixels from 0.5° VIs, GPPVPM, and SIF for each year during 2007 to
2016. Then, SOS dates of snow-covered ENF and DBF across the entire
mid- to high-latitude NH were estimated based on the monthly VIs,
GPPVPM, and SIF time series.

2.2.6. NCEP temperature data
Daytime temperature data from the National Centers for

Environmental Prediction (NCEP) reanalysis project was used in this
study. The 6 -hour air temperature at 2m were downloaded (https://
www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml) and daily
daytime mean temperature was calculated (Zhang et al., 2017). The
original NCEP air temperature products were in the 2.5° x 2.5° global
grid (144×73). To compare with GPPVPM and SIF, NCEP daily daytime
temperatures were composited into monthly data and downscaled to
0.5° spatial resolution using the nearest neighbor method.

2.3. Phenology algorithms

The logistic growth model has been widely used in numerous stu-
dies of phenology (Fisher et al., 2006; Gu et al., 2003; Zhang et al.,
2003). The 8-day 500m and monthly 0.5° datasets were interpolated to
daily before utilizing logistic regression. We used an improved double
logistic growth model (Eq. 7) to estimate vegetation phenology metrics
from NDVI, EVI, DBF LSWI, GPP, and SIF datasets (Elmore et al., 2012):

= +
⎡⎣

+ − ⎤⎦

+
⎡⎣

+ − ⎤⎦
− −

A t y a a( )
(1 exp( ) (1 exp( ))

c c0
1 2

t t
b

t t
b

01
1

1
02

2

2

(7)

where A t( ) is the observation on day t, and y0, a1, a2, b1, b2, c1, c2, t01 and
t02 are the model parameters to be estimated from the original given
data. Start of the growing season (SOS) was calculated using the DOY at
the maximum values of the second derivatives (Bucha and Koren,
2017).

LSWI in snow-covered ENF has no significant increase during the
growing season, thus it cannot easily be detected by the traditional
logistic algorithm. The specific threshold method described in previous
studies (Kang et al., 2016; Xiao et al., 2006) was used to determine SOS
by LSWI at ENF. In the current study, SOSLSWI of ENF was defined as the
first day during the snow-melt period (LSWI decrease period) when
LSWI equaled to or lower than 0.3.

3. Results

3.1. Consistency of spring phenology of snow-covered forests at the eddy
flux tower sites

The ENF CA-Man site was selected as an example to show the sea-
sonal dynamics of GPPEC, GPPVPM, NDVI, EVI, and LSWI at the snow-
covered ENF sites (Fig. 2 a). GPP estimates from the ENF eddy covar-
iance tower (GPPEC) and GPPVPM had a similar seasonal cycle. Both
GPPEC and GPPVPM at CA-Man site increased rapidly in late May. SOS
dates from GPPEC (SOSGPP-EC) and GPPVPM (SOSGPP-VPM) were identified
as 136 and 137 day of year (DOY), respectively. However, NDVI sharply
increased in late-April (SOSNDVI was 116 DOY) and EVI started to
sharply increase in late-May (SOSEVI was 142 DOY). LSWI was high and
peaked at about 0.6 during winter and early spring because of snow
cover (NDSI > 0.4), but rapidly decreased in early April due to
snowmelt. NDVI was affected by land surface snow cover conditions.
When LSWI increased or decreased during the snow cover and snow
melting period from winter to early spring, NDVI also decreased or
increased. The seasonal dynamics of the other ENF sites had similar
results with the CA-Man site; see Fig. S.2 for more information.

The DBF US-UMB site was used as an example to illustrate the
seasonal cycles of various variables in the snow-covered DBF sites
(Fig. 2 b). Both GPPEC and GPPVPM sharply increased in mid-June, and
SOS dates from GPPEC and GPPVPM were 165 and 163 DOY. NDVI
showed the first sharp increase in March along with the sharp decrease
of LSWI. The dynamics of NDVI also was distinctly converse with those
in LSWI curves during the snow cover (NDSI > 0.4) and snowmelt
periods (when NDSI decreased from the maximum value) from winter
to early spring. EVI and LSWI showed sharp increases in late May,
which was consistent with both GPPEC and GPPVPM. For similar sea-
sonal dynamics of the other DBF sites, see Fig. S.3.

Fig. 2. Seasonal dynamics of MODIS-based
vegetation indices (NDSI, NDVI, EVI, LSWI),
GPPEC, and GPPVPM at the CA-Man (ENF) site
and US-UMB (DBF) site. The curve values are
mean values of snow-covered years at each site
at 8-day temporal resolution. The dashed lines
are original data sets, the solid lines are fitted
lines based on double logistic model. Figures
for the other ENF and DBF eddy flux tower
sites can be found in Fig. S.2 and Fig. S.3. The
circle points represent the start of the growing
season (SOS) dates estimated from the NDVI,
EVI, LSWI and GPP data sources.
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Linear regression analyses for all the snow-covered ENF sites
(Fig. 3a) showed that SOS dates estimated by NDVI (SOSNDVI), EVI
(SOSEVI), and LSWI (SOSLSWI) were significantly correlated with SOS
dates by GPPEC (SOSGPP-EC) (p < 0.01). However, their RMSE and R2

values varied among these three vegetation indices. SOSNDVI had the
largest RMSE value (RMSE=26 ± 53 days) and lowest R2 (R2=0.34)
value among the three vegetation indices, while LSWI had smallest
RMSE (RMSE=17 ± 27 days) and highest R2 (R2=0.48) values.
Among all the site-years (Fig. 3c), about 50% of SOSGPP-EC occurred in
the range of 104–130 day of year (DOY). The range of SOSLSWI

(106–131 DOY) was closer to SOSGPP-EC than the other two greenness-
related vegetation indices: SOSNDVI (94–139 DOY) and SOSEVI
(123–150 DOY).

Linear regression analyses for all the snow-covered DBF sites
(Fig. 3b) also showed that SOS dates estimated by vegetation indices
(SOSNDVI, SOSEVI, and SOSLSWI) were significantly correlated with
SOSGPP-EC (p < 0.01) (Fig. 3 b). Both SOSEVI and SOSLSWI had small
RMSE values (˜7 days), while SOSNDVI had a large RMSE value (˜21
days). In addition, R2 value for the linear regression models between
SOSEVI (R2= 0.84) and SOSLSWI (R2= 0.86) and SOSGPP-EC were higher
than that for SOSNDVI (R2= 0.31). Among all the site-years (Fig. 3c),
50% of SOSEVI, SOSLSWI and SOSGPP-EC were distributed in the time
range of 120–140 DOY (Fig. 3 c). SOSNDVI was much earlier than SOEVI,
SOSLSWI, and SOSGPP-EC.

3.2. Consistency of spring phenology of snow-covered forests across the
northern mid- to high-latitudes at 0.5° (latitude and longitude) spatial
resolution

We calculated average NDVI, EVI, LSWI, GPP and SIF over all the
snow-covered ENF and DBF gridcells (0.5° gridcells) over the northern
mid- to high-latitudes, and they had strong seasonal dynamics over the
study period (Fig. 4a,b,c,d). There were strong agreements between SIF
and GPPVPM data in terms of seasonal dynamics and interannual var-
iation (Fig. 4b,d), and linear relationships between monthly GPPVPM
and SIF (Fig. 4e,f) were significant (p < 0.001).

For snow-covered ENF in northern mid- to high-latitudes, SOSLSWI

dates were significantly consistent with both SOSGPP-VPM (p < 0.01)
(Fig. 5a) and SOS_SIF dates (p < 0.01) (Fig.5c), while SOSNDVI and
SOSEVI dates had no significant linear correlation with SOSGPP-VPM.
RMSE values of SOSLSWI dates to SOSGPP-VPM and SOSSIF were 20 ± 5

days and 16 ± 3 days, respectively. Similar to our site-level analysis,
SOSNDVI dates were much earlier than SOSEVI, SOSLSWI, SOSGPP-VPM, and
SOSSIF for snow-covered ENF region. In addition, we found that SOSSIF
and SOSGPP-VPM dates were close to each other (Fig. 5a). The differences
between SOSSIF and SOSGPP-VPM ranged from about 0–8 days. As shown
in Fig. 5a, SOSGPP-VPM was on average 5 ± 3 days earlier than SOSSIF.

For snow-covered DBF in northern mid- to high-latitudes, both
SOSLSWI (p < 0.001) and SOSEVI (P < 0.01) had a significant linear
correlation with SOSGPP-VPM (Fig. 5b). However, there was a higher R2

value between SOSLSWI and SOSGPP-VPM (R2= 0.8) than between SOSEVI
and SOSGPP-VPM (R2=0.62). RMSE values between SOSLSWI and SOSEVI
and SOSGPP-VPM were 20 ± 2 days and 15 ± 6 days, respectively.
SOSLSWI was consistent with SOSSIF (P < 0.1) with a RMSE value of
18 ± 6 days while SOSNDVI and SOSEVI didn’t significantly correlate
with SOSSIF (Fig. 5d). SOSNDVI was also much earlier than SOS from
EVI, LSWI, GPPVPM, and SIF. In addition, SOSGPP-VPM were also similar
to SOSSIF for snow-covered DBF forest. Differences between SOSSIF and
SOSGPP-VPM were about 0 ˜ 7 days (Fig.5 a). On average, SOSGPP-VPM was
2 ± 3 days earlier than SOSSIF at DBF.

3.3. The effect of air temperature on spring phenology of snow-covered
forests at both site and regional scales

For the snow-covered ENF and DBF sites, responses of GPPEC,
GPPVPM, NDVI, EVI, and LSWI to average daytime air temperature
(TemDT) were analyzed (Fig. 6). ENF GPPEC and GPPVPM had similar
dynamics in response to TemDT (Fig. 6a,b), which started to increase at
˜0 °C. ENF NDVI, EVI, and LSWI also increased rapidly at 0 °C
(Fig. 6c,d,e). DBF GPPEC and GPPVPM had similar dynamics in response
to TemDT (Fig. 6f,g), which started to increase at ˜5 °C. DBF NDVI, EVI,
and LSWI also increased rapidly at 5 °C (Fig. 6h,i,j). We calculated the
average TemDT for various SOS dates in snow-covered ENF and DBF
sites (Fig. 6k, Table 2). For ENF sites, average TemDT of the SOS dates
from GPPEC, GPPVPM and LSWI were close to each other (˜5 to 6 °C), but
higher than that from NDVI and lower than that from EVI (Table 2). For
DBF sites, average TemDT of SOS for GPPEC, GPPVPM, EVI, and LSWI
were similar (˜12 °C), and higher that from NDVI (9.60 °C ± 4.11)
(Table 2).

For the snow-covered ENF and DBF gridcells (0.5°) in northern mid-
to high-latitudes, responses of GPPVPM, SIF, NDVI, EVI, and LSWI to
TemDT were analyzed (Fig. 7). ENF GPPVPM and SIF had similar

Fig. 3. Comparison of the Start of Growing Season (SOS) dates from NDVI, EVI, LSWI and GPPEC for all snow-covered sites-years: (a) linear regression analyses for
ENF, (b) linear regression analysis for DBF, (c) Box plot analysis.
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dynamics in response to TemDT (Fig. 7a,b), starting to increase at ˜5 °C.
ENF NDVI, EVI, and LSWI also increased rapidly at 5 °C (Fig. 7c,d,e).
DBF GPPVPM and SIF had similar dynamics in response to TemDT
(Fig. 7f,g), which started to increase at ˜5 °C. DBF NDVI, EVI and LSWI
also increased rapidly at 5 °C (Fig. 7h,i,j). We calculated the average
TemDT for various SOS dates in snow-covered ENF and DBF gridcells
(Fig. 7k, Table 3). For the ENF gridcells, average TemDT of the SOS
dates from GPPVPM, SIF and NDVI were close to each other (˜3 to 4 °C),
but lower than those from EVI and LSWI (Table 3). For the DBF grid-
cells, average TemDT of SOS for GPPVPM and SIF were similar (˜6 °C),
but higher than NDVI (˜3 °C) and lower than EVI and LSWI (Table 3).

4. Discussion

4.1. The limitations of greenness-related vegetation indices for identifying
spring phenology (SOS) of snow-covered forests

Greenness-related vegetation indices (NDVI and EVI) have been
used to monitor the spring phenology of ENF (Hmimina et al., 2013;
Peng et al., 2017a; Shen et al., 2014a). A previous study found that
MODIS NDVI is not an accurate indicator of phenology in evergreen
forest in France because MODIS NDVI had smaller values than in-situ
NDVI (Hmimina et al., 2013). Two additional studies reported that the
lag between ENF SOSEVI and SOSGPP-EC was about 40–60 days for the
United States, and thus EVI can also not be used for accurate SOS es-
timation (Peng et al., 2017a; Shen et al., 2014a). Consistent with pre-
vious studies, our study showed that SOSNDVI and SOSEVI were about
3–4 weeks different from SOSGPP-EC at the snow-covered ENF sites. The
inconsistency of canopy greenness and canopy photosynthesis for snow-
covered ENF is due to the fact that the start of photosynthesis in ENF
relies on temperature and water availability rather than the emergence
and growth new leaves (canopy structural development) (Ensminger
et al., 2004; Melaas et al., 2013; Monson et al., 2005).

Many studies suggested that both NDVI (Wu et al., 2017) and EVI
(Shen et al., 2014a) can provide an accurate estimation of spring phe-
nology in DBF. For example, Peng et al. (2017a) showed that DBF SOS
detected from NDVI and EVI were different from SOSGPP by about 12

days in the United States. However, our study found that NDVI cannot
detect SOS in DBF under snow-covered conditions accurately. SOSNDVI
in our study had the lowest R square and highest RMSE among these
three vegetation indices when compared with SOSGPP-EC in snow-cov-
ered DBF. SOSNDVI was about 3–4 weeks earlier than SOSGPP-EC. Earlier
experiments in the snow-covered region of the Northern Hemisphere
have shown that both snowmelt and vegetation growth can increase
NDVI values (Moulin et al., 1997). Consequently, spring phenology
derived from NDVI is always biased due to the snowmelt process, and
earlier NDVI increases could be due either to earlier vegetation growth
or to earlier snowmelt (Delbart et al., 2005; Huete et al., 2002). Our
results indicated that removing snow effects from NDVI signals is of
great importance for accurate phenology characterization in snow
covered forest regions, even for DBF. So far, some studies have tried to
develop thresholds for removing the effects of snow from NDVI time-
series data. For example, Suzuki et al. (2003) assumed that snow will
not exist when NOAA NDVI exceeds 0.2, while Gamon et al. (2013)
suggested that the land surface was snow-free when MODIS NDVI
reached 0.3. However, we found that MODIS NDVI was above 0.2 for
the whole year at the snow-covered DBF sites, and snow was not
completely melted at NDVI value of 0.3 as LSWI was decreasing dra-
matically (Fig. 1 b). Our research indicated that new approaches for
accurate estimates of spring phenology of snow-covered forests are
required.

4.2. The potential of water-related vegetation index for identifying spring
phenology (SOS) of snow-covered forests

From both the site-level and regional analysis, we found that
SOSLSWI was closer to SOSGPP and SOSSIF for both snow-covered DBF
and ENF than SOSNDVI and SOSEVI. Meantime, SOSLSWI had lower RMSE
values than SOSGPP and SOSSIF. Our results suggested that SOS from
LSWI was mostly consistent with functional SOS dates from GPP and SIF
at snow-covered forest, and LSWI could be a good indicator for snow-
covered ENF and DBF spring phenology detection when referenced by
SOSGPP and SOSSIF. Since LSWI values increase with vegetation growth
and decrease with snowmelt, it is able to decouple snowmelt signal

Fig. 4. The seasonal dynamics and interannual variation of average NDVI, EVI, LSWI, GPPVPM, and GOME-2 SIF of all the snow covered ENF (a, b) and DBF (c, d)
gridcells (0.5°) as well as the relationships between GPPVPM and SIF for snow-covered ENF (e) and DBF (f) during 2007–2016 in northern mid- to high-latitudes.
Points represent the start of the growing season (SOS) for each year.
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from vegetation growth (Ceccato et al., 2002; Xiao et al., 2009). Some
new indices also have been developed using water-related spectral
bands and have shown promise for improving the detection of phe-
nology in snow-covered regions (Delbart et al., 2005; Wang et al.,
2017). For example, the Normalized Difference Water Index (NDWI),
calculated with the near-infrared band (0.78–0.89 μm) and short-wave
infrared band (1.58–1.75 μm) from SPOT-VGT, was used for spring
phenology detection (Delbart et al., 2005, 2006). The results showed
that NDWI can provide better estimations of the start of green-up than
NDVI in Eurasia when compared with in-situ phenological records.
SPOT-VGT NDWI has also been used in northeastern China for identi-
fying the start and end of the growing season of evergreen forest (Xiao
et al., 2002). Normalized Difference Infrared Index (NDII) was calcu-
lated from the red band and short-wave infrared band and reflected
canopy water content effectively (Hardisky et al., 1983). MODIS NDII
was found to be more efficient in estimating the date of onset of
greening than methods based on NDVI throughout the central and
northern Rocky Mountains of the United States and Canada (Dunn and
de Beurs, 2011). Wang et al. (2017) developed a new index named
Normalized Difference Phenology Index (NDPI) using three bands of
MODIS: near-infrared band, red band, and short-wave infrared band.
Analysis at 11 eddy-covariance tower sites in snow-covered deciduous
ecosystems showed that NDPI was more reliable than NDVI for spring

phenology detection when compared with spring phenology metrics
derived from daily GPP.

However, the ability to monitor phenology using water-related ve-
getation indices remains limited. The specific threshold method was the
most popular method for phenology detection based on water-related
vegetation indices. For instance, Kang et al. (2016) defined SOS in Ti-
betan Plateau as the date when LSWI reached -0.1. The threshold se-
lection is relatively subjective, with different thresholds being set by
different researchers and study areas. For the sites in our study, the
linear relationship between SOSLSWI and SOSGPP-EC varied significantly
among the results from different threshold values (Fig. 8). The results
suggest that further study is needed to develop a constant algorithm for
characterizing phenology of snow-covered ENF. Also note that the
average SOSSIF dates were close to SOSGPP-VPM, but relatively far away
from SOSNDVI, SOSEVI and SOSLSWI (Table 3), which clearly suggested
that at the coarse spatial resolution (0.5° in this study) vegetation index
data are not appropriate for identifying spring photosynthesis phe-
nology of snow-covered ENF and DBF, because of mixed land cover
types within the grid cells. It is more reasonable to characterize spring
phenology with time series image data at moderate to high spatial re-
solutions (e.g., MODIS 500-m; see Table 2).

Fig. 5. Comparison of start of growing season (SOS) extracted from NDVI, EVI, LSWI, GPPVPM, and GOME-2 SIF for snow-covered ENF and DBF distributed in
northern mid- to high-latitudes during 2007-2016. (a) Comparison of ENF SOS VIs to SOS GPPVPM; (b) Comparison of DBF SOS VIs to SOS GPPVPM; (c) Comparison of
ENF SOS VIs to SOS SIF; (d) Comparison of DBF SOS VIs to SOS SIF; (e) Comparison between SOS from GPPVPM and GOME2-SIF of ENF and DBF.
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4.3. The role of air temperature for identifying spring phenology (SOS) of
snow-covered forests

Air temperature analysis at the time when SOS occurs provides
strong evidence for snow-cover conditions in different forest ecosys-
tems. As indicated by GPPEC, photosynthesis at snow-covered ENF sites
started at about 5 °C daytime temperature when snow has not yet
completely melted (Table 2). Our results match the previous conclu-
sions that the photosynthetic spring recovery in ENF (north of 50 °N)
occurs as soon as daily mean temperature temperatures exceed 2–3 °C
(Walther et al., 2016). In addition, air temperature is an important
factor that directly affects photosynthesis and has been widely used in
land surface phenology models (Richardson et al., 2006; Wu et al.,
2012). The minimum daily mean temperature for the growth of trees in
cold environments was determined to be about 5 °C in the commonly
used accumulate temperature phenology model (Prentice et al., 1992).
So, our results match the previous assumptions and conclusions in land
surface phenology models that are based on temperature. Since ever-
green trees do not need to sprout new leaves prior to each growing
season, photosynthesis rapidly increases as soon as the required
minimum air temperature shows (5 °C), and thus we detected SOS at
this time point for ENF. However, we should note that daytime tem-
perature was used in our study, which was different from the above-
mentioned phenology models with daily mean temperature. As our

results detected ENF SOS_GPP (Table 2) and SOS_SIF (Table 3) at about
5 °C daytime temperature, the daytime temperature is an important
factor for plant growth. Piao et al. (2015) also suggested that leaf onset
in the northern hemisphere was triggered more by daytime temperature
than nighttime temperature and daily mean temperature based on both
satellite and in-situ observation datasets. Using daytime temperature
instead of daily mean temperature in future land surface phenology
models can make the models more reliable.

Even though the minimum air temperature for tree growth is 5 °C,
we detected DBF SOS at about 12 °C when snow has melted completely
(He et al., 2014), because unlike ENF, DBF photosynthesis in the spring
relies on new leaves. Basically, the SOS we detected in DBF was the
time when new leaves expanded rapidly. When air temperature reaches
the minimum required for growth (5 °C), buds start to develop. After
that, it takes some days to accumulate temperature so that the buds can
expand into leaves in DBF. For example, in-situ observation in North
America found that the progression from bud swelling noticeably to
75% leaves expanded takes about 24 calendar days for tree species
(Richardson et al., 2006). Obviously, temperature requirements for SOS
in ENF and DBF are completely different. However, temperature con-
ditions were set as the same for SOS measurement in both ENF and DBF
in previous studies. For example, SOS was always defined as the time
when degree-days above 5 °C had accumulated to at least 40 for all
kinds of land cover types in previous studies (Liu et al., 2016; Wu et al.,

Fig. 6. Relationships between daytime temperature (TemDT) and GPPEC, GPPVPM, NDVI, EVI, and LSWI at ENF and DBF snow-covered sites. All the data during
January - August (8-day interval) were used. (a) - (e) are relationships to daytime mean temperature at ENF; (f)-(j) are relationships to daytime mean temperature for
DBF. The smooth curves represent the dynamic trends of samples, which were derived from the cyclic penalized cubic regression spline smooth model in R Studio. (k)
average TemDT of those SOS dates.

Table 2
Average and standard deviation of SOS measured by GPPEC and GPPVPM for the snow-covered ENF and DBF sites (500-m), and average daytime air temperature
(TemDT) of those SOS dates.

ENF ENF GPPEC ENF GPPVPM ENF NDVI ENF EVI ENF LSWI

SOS (DOY) 117 ± 20 121 ± 18 112 ± 32 136 ± 18 120 ± 22
TemDT at SOS (°C) 4.9 ± 3.71 6.01 ± 4.98 3.02 ± 4.69 8.65 ± 3.65 5.82 ± 2.87
DBF DBF GPPEC DBF GPPVPM DBF NDVI DBF EVI DBF LSWI
SOS (DOY) 134 ± 12 130 ± 12 117 ± 13 128 ± 11 128 ± 12
TemDT at SOS (°C) 12.76 ± 2.96 12.07 ± 2.66 9.60 ± 4.11 11.91 ± 2.36 11.86 ± 3.04

Q. Chang, et al. Agricultural and Forest Meteorology 275 (2019) 305–316

312



2012). Based on the same temperature model, the results showed that
growing season length based on accumulate temperature model was
less consistent with carbon uptake length in ENF and mixed forest than
DBF (Wu et al., 2012). Thus, future phenology models with temperature
which developed respectively for various land cover types are neces-
sary.

4.4. The contribution of comparing spring phenology from NDVI, EVI,
LSWI, and GPP with SOS SIF

Our study provided a comprehensive comparison among SOS dates
from NDVI, EVI, GPPVPM, and SIF for the snow-covered ENF and DBF
region in mid- to high-latitude Northern Hemisphere. SIF has recently
been used for exploring land surface ecosystem seasonal dynamics in
several studies (Jeong et al., 2017; Walther et al., 2016). Jeong et al.
(2017) used GOME-2 SIF data to examine physiological activity over
northern high-latitude forests (40°–55 °N), and their results indicated a
large-scale seasonal decoupling of structural growing season length
from NDVI and physiological growing growth season length from SIF
(by about 46 days). Walther et al. (2016) also found that MODIS GPP
and SIF showed similar seasonality in both ENF and DBF ecosystems in
the northern hemisphere, and photosynthesis SOS indicated by SIF is
about 1 month earlier than canopy greenness SOS indicated by EVI in
ENF. Consistent with previous studies, we also found SOSGPP-VPM and
SOSSIF air temperature to be similar. Quantitatively, our study con-
cluded that difference between the dates of SOSGPP-VPM and SOSSIF is

about 5 ± 3 days for snow-covered ENF and 2 ± 3 days for snow-
covered DBF in the mid- to high-latitude NH, which can be a good re-
ference for future phenology studies. Our study found that SOS from
NDVI and EVI was not significantly correlated with SOS from GOME-2
SIF for snow-covered ENF and DBF sites (Fig. 6c,d). SOS from the water-
related vegetation index (LSWI) were found to be most consistent with
SOSGPP-VPM and SOSSIF for snow-covered ENF and DBF for the first time.
In addition, SOSNDVI dates were earlier than the structural phenology of
SOSEVI and SOSLSWI, as well as earlier than the functional phenology of
SOSGPP-VPM and SOSSIF. Our conclusions for regional analysis were
consistent with the conclusions for sites analysis.

However, we should note that when exploring the consistency be-
tween SOS from satellite-based GPP and SIF is that GPP and SIF re-
present the fate of absorbed PAR at different time scales. We used in-
stantaneous GOME-2 SIF measurements while GPPVPM simulates daily
average rate of photosynthesis every 8 days. Even though daily SIF
products have been developed using instantaneous SIF observations and
have a better consistency with daily GPP (Joiner et al., 2013; Zhang
et al., 2018), the robustness of the results will be affected by the quality
of the model used to calculate daily SIF and the interpolation of 8-day
GPP to daily values. In addition, the SIF data is especially noisy and
there are less frequent measurements in some regions (Joiner et al.,
2012). It is critical that future studies utilize SIF and reflectance data
with high spatial and temporal resolution so that we can reach a greater
understanding about the phenology worldwide.

Fig. 7. Response of GPPVPM, GOME-2 SIF, NDVI, EVI, and LSWI to average daytime air temperature gradient (TemDT) over the snow-covered ENF and DBF gridcells
(0.5°) in northern mid- to high latitudes (Fig. 1). (a) - (e) ENF gridcells; (f)-(j) DBF gridcells, (k) average TemDT of tjhose SOS dates.

Table 3
Average and standard deviation of SOS dates measured by GPPVPM and SIF for the snow-covered ENF and DBF gridcells (0.5°) in northern mid- to high-latitudes
(Fig. 1), and average daytime air temperature (TemDT) of those SOS dates.

ENF ENF GPPvpm ENF SIF ENF NDVI ENF EVI ENF LSWI

SOS (DOY) 120 ± 5 125 ± 6 111 ± 13 159 ± 8 140 ± 4
TemDT at SOS (°C) 3.37 ± 0.35 3.93 ± 0.58 3.13 ± 0.71 9.39 ± 1.39 6.27 ± 0.41
DBF DBF GPPvpm DBF SIF DBF NDVI DBF EVI DBF LSWI
SOS (DOY) 116 ± 3 118 ± 3.35 87 ± 4 131 ± 6 136 ± 4
TemDT at SOS (°C) 5.54 ± 0.54 5.78 ± 5.24 2.75 ± 0.44 8.14 ± 1.05 9.11 ± 0.6
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5. Conclusions

Snow cover and snowmelt affect land surface reflectance leading to
bias SOS estimates in snow-covered forests. We comprehensively
compared the consistency of SOS dates derived from MODIS vegetation
indices (NDVI, EVI, LSWI), GPPEC, GPPVPM, and GOME-2 SIF for snow-
covered DBF and ENF ecosystems. In addition, we analyzed daytime air
temperature so that we can not only better understand when snowmelt
and SOS occur in various datasets but also evaluate the reliability of
SOS results from various datasets. Based on our analysis, comparison of
estimated SOS dates, and the relationship between SOS and air tem-
perature, we found that VIs (NDVI, EVI, and LSWI) performed differ-
ently in snow-covered ENF and DBF ecosystems. Furthermore, GPPVPM
was significantly correlated with SIF, and thus canopy functional SOS
detected from the two datasets were similar. Our results highlight that
the remote-sensing of phenology at higher latitudes needs further de-
velopment to account for the impacts of snow cover on greenness-re-
lated vegetation indices (NDVI and EVI). We suggest SOS estimates
should make full use of water-related vegetation indices and consider
daytime air temperature so that we may better understand the re-
lationship between the changes in greenness and photosynthesis.
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