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A B S T R A C T

The changing climate is shifting the seasonality of photosynthesis in vegetation, including the start (SOS), end
(EOS), and length (LOS) of the growing season, and the peak photosynthesis timing (PPT). While the SOS, EOS,
and LOS have been widely investigated, the PPT of grasslands – as a proxy for the response of seasonal plant
photosynthesis to climate change – has been overlooked. In this study, we propose a hybrid generalized additive
model (HGAM) method to extract PPT using the Vegetation Photosynthesis Model (VPM)-based gross primary
production (GPP) product, and we examine the dynamics, drivers, and consequences of PPT changes in tem-
perate and alpine grasslands in China over 2000–2016. We found that the PPTs in temperate and alpine
grasslands have exhibited advancing (with −0.68 days yr−1, p < 0.05) and delaying (with 0.29 days yr−1,
p=0.158) trends, respectively. In addition, preseason precipitation and soil moisture were positively correlated
with the PPT in temperate and alpine grasslands, respectively, while the preseason temperature consistently
controlled the PPT changes in both grasslands. Furthermore, we found that an earlier PPT was associated with
higher annual production in the temperate grasslands but not in the alpine grasslands in China. The divergent
PPT patterns indicated the varied adaptation characteristics to climatic constraints in the temperate and alpine
grasslands and also caused different consequences on carbon uptake. This study highlights the importance of PPT
in understanding the spatiotemporal dynamics of vegetation photosynthesis and the carbon cycle under a
changing climate.

1. Introduction

Understanding the mechanism driving interannual variations in
annual gross primary production (GPPannual) is critical for more accu-
rately predicting the responses of the carbon cycle to future climate
change (Anav et al., 2015; Poulter et al., 2014). Previous efforts found
that the variance in GPPannual is mainly controlled by the length of the
growing season and the maximum photosynthetic production (GPPmax)
(Liu et al., 2018; Xia et al., 2015; Zhou et al., 2017). Specifically,

advances in the start of the growing season (SOS) and delays in the end
of the growing season (EOS) have extended the growing season or
photosynthetic active period and have consequently enhanced the an-
nual vegetation production in northern ecosystems, such as North
American grasslands (Hufkens et al., 2016; Xu et al., 2016). While the
dynamics of land surface phenology, especially the SOS and EOS, have
been well studied (Garonna et al., 2014; Keenan et al., 2014; Piao et al.,
2017; Richardson et al., 2010), the dynamics of GPPmax, especially the
timing of GPPmax (namely, the peak photosynthesis timing (PPT)), have
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been relatively little studied in the field (Gonsamo et al., 2018), espe-
cially for grasslands with clear seasonality. The PPT of grasslands cor-
responds to the timing of maximum resource availability, which affects
the habitat and forage for livestock (Xu et al., 2016). A shift in PPT is
considered to be an ecophysiological adaptation of plants to changes in
the environment to reduce the costs for optimal growth (Schimel, 2010;
Xu et al., 2016) and is expected to disrupt the synchrony of biotic in-
teractions via mismatches in the plant-pollinator biorhythm (Hegland
et al., 2009).

Previous studies on the PPT have generally been based on long-term
satellite-derived Normalized Difference Vegetation Index (NDVI) data-
sets (mostly the biweekly 8 km GIMMS NDVI3g product; http://ecocast.
arc.nasa.gov/) and parameter-based double logistic function (DLF) fit-
ting methods (Gonsamo et al., 2018; Xu et al., 2016). A variety of forms
of DLF methods have been developed and widely used to estimate
phenological indices of vegetation (e.g., SOS and EOS) and to examine
their dynamics in response to climate change at the site scale, regional
scale and larger scales (Beck et al., 2006; Elmore et al., 2012; Gonsamo
et al., 2018; Gu et al., 2009). To our limited knowledge, the PPT re-
trieval and trend analyses at the landscape level can be improved in two
ways: input data and method. In terms of input data, previous studies
indicated that the NDVI-derived phenological metrics cannot be used as
a surrogate for phenology of canopy photosynthesis and its seasonal
changes in many boreal and temperate vegetation ecosystems (Shen
et al., 2014a) because NDVI can better reflect ecosystem structure (e.g.,
leaf area index (LAI) and aboveground green biomass) rather than
ecosystem function (e.g., chlorophyll content and biological activity)
(Shen et al., 2015a; Wu et al., 2017). GPP provides more detailed in-
formation on the PPT of grasslands than does NDVI. Several global GPP
products with a high temporal resolution and spatial continuity (8-day,
500m~1 km) are now available, for example, the Vegetation Photo-
synthesis Model (VPM) GPP (Zhang et al., 2017) and Breathing Earth
System Simulator (BESS) GPP products (Jiang and Ryu, 2016; Ryu
et al., 2011). The VPM GPP product has been evaluated and shown to
be reliable in previous studies (Dong et al., 2015; Wagle et al., 2014;
Zhang et al., 2017). In terms of PPT retrieval methods, the traditional
parameter fitting methods (e.g., the DLF and asymmetric Gaussian
function) are not sensitive to fluctuations (e.g., declining greenness or
GPP) in the vegetation growth trajectory in the maturity phase (Elmore
et al., 2012). The shape of the fitted NDVI curve generally shows a
plateau during the peak season and tends to mask the actual changes in
vegetation growth during this period due to disturbances such as
drought (Huete et al., 2006). Therefore, a previous study assumed that
the peak of photosynthesis occurs at the midpoint between the start and
end of the peak season on the growth curve (Gonsamo et al., 2018).
However, it is unclear if this method works well when using GPP as the
input. Potential improvements in the estimation of the PPT of grass-
lands in this study include 1) the replacement of NDVI with GPP as the
input data to better characterize the seasonal dynamics of photo-
synthesis and 2) the use of a more suitable fitting method for PPT es-
timates.

Previous studies have reported the springward shifts in PPT in the
northern hemisphere using remote sensing-based observations
(Gonsamo et al., 2018; Park et al., 2019; Xu et al., 2016). The inter-
annual variation in GPP and PPT is controlled by multiple climatic
factors (e.g., temperature, water availability, radiation, etc.) (Park
et al., 2019). Previous studies have mostly analyzed the relationship
between PPT and individual climatic factors, such as temperature or
precipitation (Gonsamo et al., 2018; Xu et al., 2016; Zhou and Jia,
2016; Zu et al., 2018), and found that temperature is the main driver of
the seasonal shifts in photosynthesis (Xu et al., 2016). Increased water
availability due to thawing of permafrost has resulted in a stronger
greening trend in boreal forests of Siberia than in North America
(Forkel et al., 2015), revealing that water availability was also a co-
dominant control on the seasonal dynamics and interannual changes
and trends of photosynthesis (Forkel et al., 2015; Park et al., 2019).

Many studies have also shown that considerable spatial differences exist
in the primary influencing factors (Forkel et al., 2015; Misra et al.,
2018). However, the geographically variable relationships between
vegetation PPT and multiple climatic factors (temperature, precipita-
tion, solar radiation, and soil moisture) at the regional scale remain
poorly understood. The temperate grasslands and alpine grasslands in
China have different mechanisms in the carbon and water cycles (Ge
et al., 2018). The seasonal photosynthetic responses of the temperate
and alpine grasslands in China to climate change show different pat-
terns according to model simulations (Liu et al., 2018). It is unclear
whether these two grasslands in China have the same trends in PPT and
whether the major climatic drivers are the same.

The PPT reflects the turning point in the vegetation photosynthesis
dynamics from the greenup phase to the senescence phase. A shift in the
PPT directly affects terrestrial carbon uptake during the peak season
and consequently impacts annual carbon budgets and the seasonality of
carbon cycle (Gonsamo et al., 2018; Wolf et al., 2016; Xu et al., 2016).
In turn, these changes can alter the processes involved in the energy,
water and nutrient cycles (Richardson et al., 2013; Zeng et al., 2017).
The GPPannual of vegetation has experienced considerable interannual
variation in the context of climate change (Anav et al., 2015). Recent
studies have shown that the increase in vegetation productivity in
warming northern regions is closely related to the advance in the PPT
through enhanced carbon uptake early in the growing season (Gonsamo
et al., 2018; Park et al., 2019; Xu et al., 2016). However, the con-
sequences of changes in the PPT on carbon uptake vary among different
regions (Park et al., 2019). For example, the correlation between an
earlier peak and higher production is strong in some Arctic and boreal
regions. Temperature stress in cold high latitudes can be alleviated due
to warming, leading to an earlier SOS and PPT along with the increases
in summertime peak production and annual production. In contrast, a
relationship between an earlier peak and less production has been ob-
served in some North American boreal forests and some temperate re-
gions, mainly in water-limited ecosystems, where the PPT does not
occur at the usual time due to water stress in summer, consequently
influencing the peak and annual production (Angert et al., 2005;
Buermann et al., 2013; Wang et al., 2018b; Wolf et al., 2016). These
distinct impacts of PPT shifts on ecosystem productivity suggest a high
degree of complexity in the climatic drivers in different regions and
ecosystems (Park et al., 2019). In particular, whether the ‘earlier PPT-
higher production’ pattern exists in the two typical grasslands in China
(temperate and alpine) deserves further research (Gonsamo et al., 2018;
Park et al., 2019).

In an effort to address the above-mentioned issues, the objective of
this study is to examine the pattern and attribution of interannual
variations in PPT, as well as the consequences of PPT shifts on GPPannual
in typical temperate and alpine grasslands in China, by using improved
data (remote sensing-based GPP products) and algorithms (gap-filling
and fitting methods). Specifically, we attempt to answer three ques-
tions: (1) Do the PPT trends show consistent patterns between the
temperate and alpine grasslands in China? (2) What are the main cli-
matic drivers affecting the interannual variations in PPTs in the two
grasslands? (3) How do the shifts in the PPT affect vegetation GPPannual
in the two grasslands?

2. Materials and methods

2.1. Study area

The study area includes temperate grasslands (mainly located in
Inner Mongolia and the Loess Plateau) with an average elevation of
approximately 1200m above sea level (ASL) and alpine grasslands
(located in the Tibetan Plateau) with an average elevation of> 4000m
ASL (Fig. 1). Both of these grasslands are covered with herbs with
distinct seasonality, but they have different plant species, climates and
soil properties (Fan et al., 2016; Xu et al., 2016). In particular, the main
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difference between the alpine grasslands and the temperate grasslands
is that the former is characterized by a lower annual mean temperature,
ranging from −15 °C to 5 °C (Shen et al., 2015a; Liu et al., 2018; Wang
et al., 2018c). In addition, pixels with a multiyear mean NDVI<0.1
were excluded to eliminate the impacts of sparsely vegetated areas
(Shen et al., 2014b; Wu et al., 2018).

2.2. Data

2.2.1. GPP data at the eddy flux tower sites
Daily GPP (GPPEC) data from six eddy-covariance (EC) flux tower

sites (13 site-years) in the FLUXNET 2015 database (https://fluxnet.
fluxdata.org) were used (Table S1), including four temperate grassland
sites (CN-Cng, CN-Du2, CN-Du3, and CN-Sw2) and two alpine grassland
sites (CN-HaM and CN-Dan) (Yu et al., 2008; Yu et al., 2013).

2.2.2. GPP data products from the data-driven models
The satellite-based GPP data derived from the VPM model (GPPVPM)

were used in this study to determine the phenological indices, including
SOS and PPT. We used the 8-day 0.05° VPM GPP V2.0 dataset from
2000 to 2016 which was produced by simulations of an improved VPM
model (Xiao et al., 2004a; Xiao et al., 2004b), the Moderate Resolution
Imaging Spectroradiometer (MODIS) images, and the NCEP (National
Centers for Environmental Prediction) Reanalysis II climate data
(Zhang et al., 2017). This GPPVPM product had two major improve-
ments: first, it better captures the seasonal dynamics of vegetation by
gap-filling low-quality or missing observations with a novel gap-filling
and smoothing algorithm. Second, this product employed plant func-
tion type (PFT)-specific parameters for C3 and C4 plants (Zhang et al.,
2017). The GPPVPM product was assessed against GPP data from 113 EC
flux towers around the globe, and the results showed good accuracy in
terms of seasonal dynamics and interannual variation across biome
types (Zhang et al., 2017). We also used other independent gridded GPP

products, including the FLUXCOM GPP products (GPPFLUXCOM) (Jung
et al., 2017) and BESS GPP products (GPPBESS) (Jiang and Ryu, 2016;
Ryu et al., 2011). The daily GPPFLUXCOM with a spatial resolution of 0.5°
was averaged from three machine learning algorithms (random forests,
artificial neural networks, and multivariate adaptive regression splines)
for 2000–2013. The GPPFLUXCOM product was produced from 224 flux
tower sites and combined with grid CRUNCEPv6 climate forcing data
and satellite-based vegetation indices (VIs) data tiled by PFT as model-
driving inputs (Jung et al., 2017). The GPPBESS product with a 1-km
resolution and 8-day interval from 2000 to 2015 was derived from the
BESS model. The BESS model is a simplified remote sensing-derived
biophysical process model that couples atmosphere and canopy radia-
tive transfers, canopy photosynthesis, transpiration, and energy balance
with multiple satellite remote sensing datasets (Jiang and Ryu, 2016).
The BESS model used a mechanistic Farquhar model (an enzyme kinetic
model) to estimate GPP, and the model has been proven to perform well
in estimating GPP (Ryu et al., 2011).

2.2.3. MODIS surface reflectance product
The 17-year (2000–2016) MOD09A1 surface reflectance product

with a spatial resolution of 500m and an 8-day temporal interval was
used to calculate the NDVI and Enhanced Vegetation Index (EVI) of the
pixels that matched the coordinates of the above grasslands FLUXNET
sites across China. The NDVI and EVI were calculated as follows (Huete
et al., 2002).
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where ρBLUE, ρRED, and ρNIR1 are the reflectance values from the blue
(459–479 nm), red (620–670 nm), and NIR1 (841–875 nm) bands, re-
spectively.

Fig. 1. Spatial distribution of temperate and alpine grasslands in China, including the Inner Mongolia Autonomous Region and Loess Plateau (referred to as the
temperate grasslands) and the Tibetan Plateau (referred to as the alpine grasslands), and the locations of the FLUXNET tower sites used for validation in this study
along the China Grassland Transect.
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2.2.4. MODIS land cover data
We used the grassland data layer from the MODIS Terra/Aqua

Combined Land Cover Type Yearly product (MCD12C1 Version 6) with
a spatial resolution of 0.05° and the International Geosphere-Biosphere
Program (IGBP) classification scheme (Friedl and Sulla-Menashe,
2015). To ensure consistency in the land cover over the years, we se-
lected those pixels that were classified as grassland in all years of
2001–2016.

2.2.5. Gridded climate and soil moisture data
Gridded monthly temperature, precipitation, and downward short-

wave radiation data with a spatial resolution of 0.1° over 2000–2016
were obtained from the China Meteorological Forcing Dataset (Chen
et al., 2011; Yang et al., 2010). The climate dataset was derived from
several existing international common meteorological datasets, in-
cluding Princeton reanalysis data, GLDAS data, GEWEX-SRB radiation,
and TRMM precipitation data (3B42), and the dataset was combined
with China Meteorological Administration (CMA) station observation
data (Chen et al., 2011).

The monthly soil moisture data were derived from the TerraClimate
dataset, which has a monthly temporal resolution and a spatial re-
solution of 1/24° (Abatzoglou et al., 2018). The TerraClimate dataset
uses climatically aided interpolation and combines high-spatial re-
solution climatological normals from the WorldClim dataset with data
from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55) to pro-
duce a monthly dataset. Additionally, it uses a water balance model that
incorporates reference evapotranspiration, precipitation, temperature,
and interpolated plant extractable soil water capacity (Abatzoglou
et al., 2018).

2.3. Methods

2.3.1. New algorithm for estimating SOS and PPT from multisource GPP
products

We proposed a new framework for estimating SOS and PPT, that is,
the hybrid generalized additive model (HGAM) method (Fig. S1). The
HGAM includes a data gap-filling approach involving the modified
Savitzky-Golay filter (Chen et al., 2004) (Fig. S2) and a data smoothing
approach involving the generalized additive model (GAM) (Daniel and
Charlie, 2018). As an adaptive nonparametric fitting method, the GAM
algorithm represents the relationship between a response variable (e.g.,
GPP) and explanatory variables (e.g., day of year (DOY)) as a sum of
smoothed link functions of the explanatory variables and uses penalized
regression splines to obtain optimal fitting parameters (Hastie and
Tibshirani, 1990). The smoothed link functions include three classes of
smoothers, i.e., local regression (e.g., loess), smoothing splines and
regression splines (e.g., B-splines, P-splines, and thin plate splines), to
uncover hidden patterns in the data and fit the data with different
patterns more appropriately (Hastie and Tibshirani, 1990; Larsen,
2015). Therefore, the HGAM algorithm is expected to be suitable for
different GPP curves with asymmetric peaks or short plateaus during
the peak season (Fig. S3).

Then, we applied the HGAM method on remote sensing-based GPP
(i.e., GPPVPM, GPPBESS, and GPPFLUXCOM), NDVI, EVI, and flux site-
based GPP (i.e., GPPEC) time series to estimate the SOS and PPT.
Different GPP products were used to ensure the robustness of the re-
sults. The specific technical process was as follows.

1) Gap-filling and smoothing of the time series data. The missing values
and anomalies in raw GPP/NDVI/EVI time series were filled using
the cubic spline interpolation and the modified Savitzky-Golay filter
(Chen et al., 2004). This filtering step could make the input data into
the following fitting model more stable and reasonable (Fig. S2).
The integration of the two filters is more necessary when using NDVI
and EVI as input. Next, the GAM fitting method was performed to
smooth the above gap-filled GPP/NDVI/EVI to the daily GPP/NDVI/

EVI curve. For a more detailed description of the algorithm justifi-
cation, please see the Supplementary Text S1.

2) Estimates of SOS and PPT. The SOS and PPT were estimated from the
reconstructed daily GPP/NDVI/EVI curve. Specifically, the SOS was
identified as the first day (DOY) when the reconstructed daily GPP/
NDVI/EVI crossed a predefined threshold. Here we set the threshold
to 10% of the multiyear average of amplitude in the seasonally
smoothed GPP/NDVI/EVI curve for each pixel in 2000–2016 and for
each validation flux tower site in all the available years (Shang
et al., 2017; Wu et al., 2013; Zhou et al., 2016). The PPT was
identified as the first day (DOY) when the fitted daily GPP/NDVI/
EVI reached the peak (Xu et al., 2016) (Fig. S1).

2.3.2. Evaluation of estimated PPT at flux tower sites
To evaluate the robustness of the estimated PPT from GPP, the

following two methods were carried out.

1) Comparisons of PPTs extracted using the HGAM method with those
using other fitting methods based on VPM GPP at flux tower sites.
The other fitting methods included four common DLF fitting
methods by Gonsamo et al. (2018), Elmore et al. (2012), Beck et al.
(2006) and Gu et al. (2009). These four methods are referred to as
Gonsamo's method, Elmore's method, Beck's method and Gu's
method in this study. The PPT estimation with these methods was
the same as with the HGAM method, except that the fitting method
was replaced by the corresponding DLF method.

2) Comparisons of the interannual variance in PPT estimated from
VPM GPP with that from independent MODIS NDVI and EVI data at
flux tower sites. These comparisons were performed to determine
whether the PPT derived from GPPVPM data could capture the in-
terannual variations in PPT. The method of PPT retrieval based on
MODIS NDVI and EVI data was the same with that for the GPP
product, but a step needed to be implemented in advance to replace
the reduced NDVI/EVI values in nongrowing seasons with the
median values over 2000–2016. This process further eliminated the
effects of clouds or snow cover on NDVI and EVI following the
procedures mentioned in the previous study (Shen et al., 2015a).

2.3.3. Trend and variability analyses of PPT estimates
We examined the trend and interannual variability of PPT dynamics

at the pixel and regional scales. First, we applied the Theil-Sen slope
estimator combined with the Mann-Kendall test method to the PPT time
series in each pixel to obtain the temporal trend and significance level
of PPT over 2000–2016. The Theil-Sen slope estimator is a median-
based non-parametric trend test estimator, which has no strict re-
quirement in terms of data distribution. The Mann-Kendall test is a non-
parametric trend test method, commonly employed to detect mono-
tonic trends in time series related to geography (Forkel et al., 2015;
Wang et al., 2018a). The trend analysis was also applied in the regional
statistics in the temperate and alpine grasslands. The t-test based on
pixels contained in the two studied grasslands was used to test whether
there was a significant difference in the trends of PPT between the two
regions.

Second, to obtain the dynamics of the interannual variability in the
PPT, the standard deviation (STDPPT) was calculated after applying a 7-
year moving window with a one-year lag at the pixel scale (Piao et al.,
2014). After the STDPPT values were calculated within each 7-year
window, they were used in the above trend analysis method to assist in
investigating the direction of the PPT variabilities over 17 years (Shi
et al., 2018). In addition, moving-window analyses with different
moving windows ranging from 5 to 11 years with a one-year lag were
performed to explore the robustness of our results.

2.3.4. Attribution analyses of PPT estimates
The length of the preseason for each climatic factor (temperature,

precipitation, and downward solar radiation) or soil moisture was
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determined by the following two steps. First, we separately calculated
the Pearson correlation coefficients between PPT and the each of cli-
matic factors and soil moisture calculated from periods ahead of the
month for which the multiyear average PPT was being determined at
intervals of 1month (Liu et al., 2016b; Shen et al., 2015a). We only
considered the climate during the first half of the growing season (the
spring-summer period); hence, the maximum preseason length was set
from the multiyear average SOS to the multiyear average PPT on the
basis of previous studies (Liu et al., 2016b; Shen et al., 2015a; Xu et al.,
2018). Second, we determined the preseason time span in which the
maximum Pearson correlation coefficient (absolute value) between the
PPT and each specific climatic factor and soil moisture as the preseason
length for the individual drivers.

Subsequently, to explore the linkage between the PPT and each
individual climatic factor and soil moisture while eliminating the ef-
fects of the other three factors, we calculated the partial correlation
coefficients between the PPT and mean temperature, sum precipitation,
sum solar radiation and mean soil moisture over the preseason period
(Liu et al., 2016a; Liu et al., 2016b; Peng et al., 2013; Shen et al.,
2015a). To ensure the robustness of the results, the Pearson correlation
coefficients between regionally averaged values of PPT and those of
each individual climatic factor and soil moisture were also calculated
for the temperate and alpine grasslands, respectively. In addition, we
calculated the Pearson correlation coefficients between the SOS and
PPT at each pixel and region to investigate the relationship between
them. All data processing and statistical analyses were conducted in
Python version 2.7 (https://www.python.org/), and the significance
levels in this study were estimated with a two-tailed test.

In addition, to avoid differences caused by disparate datasets, we
integrated all the data, including GPP, climate, and soil moisture data,
into the same geographical range with the same spatial resolution (0.1°)
and a monthly temporal resolution for the attribution analyses of in-
terannual variance in the estimated PPTs.

3. Results

3.1. Evaluation of HGAM-based PPTs and intercomparison with other
independent variables

The validation of GPP-based PPT estimates of the HGAM method
and the four DLF methods using FLUXNET GPP as reference showed
that the HGAM method outperformed the four DLF methods with
higher R2 and much lower root mean square error (RMSE) values
(R2= 0.66, RMSE=6.56 days), while R2 were 0.59, 0.60, 0.55, 0.58,
and RMSEs were 7.07, 6.93, 7.34, 7.27 days for Gonsamo's method,
Elmore's method, Beck's method, and Gu's method, respectively
(Fig. 2a-e). In addition, the PPT estimates derived from GPPVPM were
more accurate than those from MODIS NDVI (R2= 0.48,
RMSE=9.60 days) and EVI data (R2= 0.49, RMSE=12.59 days)
(Fig. 2e-g). In terms of the interannual variation of PPT, the results
consistently showed that the interannual variation of PPT could be
captured quite well by the GPPVPM data over 2000–2016 at flux tower
sites (Fig. 2h).

According to the temporal profiles of GPPEC and GPPVPM corre-
sponding to the pixels of flux tower sites, we found that the GPP curves
with an asymmetrical peak and short plateau in the annual cycle were
common at most sites (Figs. S3, 3). Compared to the DLF methods, the
HGAM method was able to better capture the trajectory of seasonal
vegetation photosynthetic activities (e.g., GPPmax, PPT, and SOS);
however, there were no clear differences in interannual variation of
PPT among all methods (Fig. 3). Compared to the DLF methods, the
HGAM method worked more effectively for some cases (e.g., CN-Sw2)
where the GPP curves had double peaks during the peak season in a
single cycle, which was likely caused by disturbances such as drought
(Fig. 3h, i). In contrast, not all DLF methods could extract PPT well in
these cases, such as Gonsamo's and Beck's methods, and the estimated

PPTs were greatly divergent, with great differences (e.g., a half month)
among different DLF methods.

3.2. Divergent pattern of PPT changes in the temperate and alpine
grasslands of China

Although the multiyear average PPTs in the temperate and alpine
grasslands of China were mainly located in a similar range from DOY
200 to 240 (the end of June to the end of August), the distribution of
multiyear averaged PPTs showed different patterns in these two
grasslands (Fig. 4). In the temperate grasslands, the PPT had a two-peak
distribution of multiyear average PPTs ranging from DOY 180 to DOY
240, with an average value of DOY 211 (Fig. 4c). The two peaks (DOY
205 and DOY 219) were located in the southwestern and northern parts
of the temperate grasslands (Fig. 4a). However, the alpine grasslands
showed a narrow one-peak distribution of multiyear average PPTs
ranging from DOY 190 to DOY 235 with an average PPT of DOY 212,
and the peak (DOY 210) was mainly located in the center and eastern
parts of the alpine grasslands (Fig. 4c). These results showed that the
multiyear averaged PPTs of the alpine grasslands over 2000–2016 were
more uniform than those of the temperate grasslands.

In terms of the PPT trends, the temperate grasslands experienced an
overall advancing PPT trend. The temperate grasslands with advanced
PPT accounted for approximately 80.9% (27.7% statistically significant
at p < 0.05) of the total temperate grasslands pixels (Fig. 5a). In
contrast, the alpine grasslands experienced a delayed PPT, and the al-
pine grasslands pixels with delayed PPT accounted for ~ 83.0% of the
total alpine grasslands pixels (14.4% statistically significant) (Fig. 5a).
The areas with significant PPT trends were generally situated in eastern
Qinghai Province, northern Shaanxi Province and the east-central parts
of the Inner Mongolia Autonomous Region (Fig. 5a). We found that the
PPT trends between temperate and alpine grasslands were significantly
different at the pixel scale (p < 0.01, t-test, Fig. 5b). The regionally
averaged PPTs in the temperate and alpine grasslands showed con-
trasting rates of change −0.684 day yr−1 (p < 0.05) and
0.288 day yr−1 (p=0.158), respectively (Fig. 5b). The divergent shifts
in PPT were more evident if only the pixels with significant trends were
considered (Fig. 5c). Additionally, a much larger amplitude (absolute
values of the linear regression slope) of PPT changes occurred in the
temperate grasslands than in the alpine grasslands. The divergent spa-
tial patterns of PPT were also verified using the DLF method (e.g.,
Gonsamo's method) (Fig. S4) and the independent FLUXCOM GPP and
BESS GPP datasets (Fig. S5). A similar pattern of PPT trend was also
found when using the 0.1° VPM GPP products (Fig. S6a).

3.3. Attribution of grassland PPT dynamics

3.3.1. Effects of preseason climatic factors on PPT changes
In the temperate grasslands, the PPT was mainly controlled by the

preseason temperature and precipitation (Fig. 6a, b). The PPT showed
positive partial correlations with preseason temperature in> 62.3% of
the temperate grassland area, and these correlations were significant in
22.3% of the total temperate grassland area (p < 0.05). This area was
mainly distributed in the central and eastern parts of the temperate
grasslands (Fig. 6a). Although the area with significant positive partial
correlations between preseason precipitation and PPT was smaller
(19.2%) than that between preseason temperature and PPT, the area
accounted for ~ 66.6% of the temperate grasslands and was mainly
located in the eastern and southeastern parts of the temperate grass-
lands (Fig. 6b). Limited area (~ 6.8% and 3.3%) showed significant
relationships between PPT and solar radiation and between PPT and
soil moisture, respectively (Fig. 6c, d).

In the alpine grasslands, the PPT change was mainly controlled by
the preseason temperature and soil moisture (Fig. 6). Positive partial
correlations between temperature and PPT were found in>60.0% of
the alpine grasslands area, 13.2% of which exhibited statistically
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significant correlations at p < 0.05. These areas mainly occurred in the
central and southern parts of the Tibetan Plateau (Fig. 6a). The areas
with partial positive correlations between soil moisture and PPT ac-
counted for> 68.5% of the alpine grasslands (19.4% of which were
statistically significant correlations) (Fig. 6c). Significant correlations
between PPT and precipitation and between PPT and solar radiation
also occurred in limited regions (7.5% and 8.0%, respectively) and were
mainly distributed in the eastern and southern Tibetan Plateau (Fig. 6b,
d).

These partial correlation results were confirmed by Pearson

correlation analysis at the pixel (Fig. S7) and regional levels (Fig. S8). In
addition, both the partial correlation and Pearson correlation from the
FLUXCOM GPP and BESS GPP, respectively, showed basically con-
sistent results with those from the VPM model, although less area
showed significant correlations for FLUXCOM GPP (Figs. S9-S12). The
effect of soil moisture on PPT in the alpine grasslands was not well
reflected in the analysis for FLUXCOM GPP.

3.3.2. Influence of spring phenology on changes of the PPT
A positive correlation between SOS and PPT was found in 80.7% of

Fig. 2. Direct validation (a-e) and synergistic comparison (e-h) of peak photosynthesis timing (PPT) estimates based on different datasets and algorithms across flux
sites in grasslands of China. Each data point in subfigures (a-g) represents a pair of PPT values derived from EC GPP and VPM GPP through (a) Gonsamo's method, (b)
Elmore's method, (c) Beck's method, (d) Gu's method, and (e) HGAM method at the same site. The “CN-Sw2” site is not included due to the poor data quality in the
raw time series. The light gray dotted line represents a 1:1 line. The black line is the estimated linear regression line. The shaded area represents the 95% confidence
interval for the estimated black solid linear regression line. The label DOY denotes the day of year. The blue, green, and red dotted lines and the black symbols in
subfigure (h) indicate the temporal profiles of PPT derived from MODIS NDVI, EVI, and VPM GPP and EC flux GPP, respectively, at six flux tower sites during
2000–2016. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The estimated phenology indices (SOS and PPT) derived from the hybrid generalized additive model (HGAM) method and four double logistic function (DLF)
methods, respectively. SOS and PPT represent the start of the growing season and peak photosynthesis timing, respectively. The site-level case demonstrates that the
HGAM approach can be used to estimate the PPT for VPM GPP with varied shapes at EC flux sites. The VPM GPP curves have symmetrical peaks (a), asymmetrical
peaks and short plateaus (b-g) and asymmetrical double peaks (h-i), which first drop and then rise during the peak season (possibly caused by drought in summer).
The black point indicates the original 8-day VPM GPP data. The red, green, blue, magenta and cyan dotted lines represent the fitted GPP curves derived from the
HGAM approach and four DLF methods from Gonsamo et al. (2018), Elmore et al. (2012), Beck et al. (2006), Gu et al. (2009), respectively. The numbers in
parentheses represent the estimated phenological indices (SOS and PPT), and the different colors represent the results of different methods, corresponding to the
colors in the legend. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Multiyear averaged peak photosynthesis
timing (PPT) from the VPM-based GPP for grasslands
in China. (a) The upper panel shows the spatial dis-
tribution of the 17-year averaged PPT for the grass-
lands in China. The bottom panel shows the fre-
quency distribution of 17-year averaged PPT for (b)
the all grasslands in China and (c) the temperate and
alpine grasslands. The terms PDF and Frequency re-
present the probability density function and the fre-
quency, respectively. DOY denotes the day of year.
The blue outline indicates the temperate grasslands,
and the red outline indicates the alpine grasslands.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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the temperate and alpine grassland pixels, and the correlations were
statistically significant at p < 0.05 in 28.1% of the above two grass-
lands, mainly in the central and southern parts of the temperate
grasslands and the southeastern part of the alpine grasslands (Fig. 7a).
This positive correlation was also consistent with the analyses using the
regionally averaged PPT and SOS values (Fig. 7b). However, the tem-
perate and alpine grasslands showed different variations in the re-
gionally averaged PPT and SOS (Fig. 7b, c). Specifically, the SOS and
PPT showed a statistically significant consistency in interannual var-
iation in the temperate grasslands (R=0.70, p < 0.05), while the re-
lationship between SOS and PPT in the alpine grasslands was insignif-
icant (R=0.07, p > 0.05).

3.4. Effects of PPT shifts on vegetation production

We found a significant increase in GPPannual for both temperate and
alpine grasslands (Fig. 8a), and the temperate grasslands had a higher
growth rate of GPPannual than that of the alpine grasslands (Fig. 8, c-f).
The relationship between interannual variance in GPP and PPT also
showed divergent patterns on pixel (Fig. 8b) and regional scales
(Fig. 8c-f). Specifically, in the temperate grasslands, the increased
GPPannual had strong negative correlations with the earlier PPT
(R=−0.58, p < 0.05) (Fig. 8c, e). In contrast, the insignificant po-
sitive correlation (R=0.15, p=0.566) between the increased
GPPannual and delayed PPT was shown in the alpine grasslands (Fig. 8d,
f).

Fig. 5. The trends of peak photosynthesis timing
(PPT) in the grasslands of China over the last
17 years (2000–2016). (a) The upper panel shows
the spatial distribution of the trend and corre-
sponding statistical significance of the 17-year PPT
in the grasslands of China at the pixel scale. The red
areas in the inset plot indicate that the trends are
statistically significant (p < 0.05). The bottom pa-
nels show the temporal trends of the regionally
averaged 17-year PPTs in the temperate and alpine
grasslands of China at the regional scale, i.e., (b) for
entire grasslands and (c) for grassland pixels ex-
periencing a significant trend. The dots connected by
the solid lines represent the annual PPT values. The
dashed lines represent the trend lines of the PPT
changes. The shaded areas represent the 95% con-
fidence interval of the estimated slope. The inset bar
plots indicate the distributions (mean ± 1 standard
deviation) of the PPT trends in these two regions. A
significant difference in the trends of PPT exists be-
tween the two regions (p < 0.01, t-test pixel-based).
The blue colour indicates the temperate grasslands,
and the red colour indicates the alpine grasslands.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 6. Spatial patterns of partial correlation coefficients between peak photosynthesis timing (PPT) derived from VPM GPP and climatic factors, including preseason
temperature (a), precipitation (b), soil moisture (c) and downward solar radiation (d). The inset plots indicate the regions in which the corresponding partial
correlations are significant at p < 0.05.
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4. Discussion

4.1. Improved HGAM framework for estimating the PPT

The consistent results from multiple independent datasets and four
DLF fitting methods demonstrated the robustness of our newly pro-
posed HGAM framework and the remote sensing-based GPP for mon-
itoring the interannual variation in PPT (Figs. 2, S4, S5).

Generally, the photosynthetic responses of herbaceous plants fluc-
tuated quickly in response to the changes in climate during the peak
season within a single annual cycle; hence, GPP curves with asymme-
trical peaks and short plateaus during the peak season were common in
the grassland ecosystems (Fig. 3, S3). In the HGAM method, the fitting
parameters and the type of eventually predictive functions do not need
to be known in advance as the predictor functions can be automatically
derived (Larsen, 2015). This can flexibly and automatically capture the
spatiotemporal variations in phenological indices (e.g., SOS and PPT)
and maximum GPP (Fig. 3 a-h) through several smooth functions (e.g.,
regression splines and smoothing splines) (Larsen, 2015). Therefore, the
HGAM framework can provide more reliable gap-filling and data
smoothing solutions for extracting land surface phenology, comparing
to the existing parametric fitting methods.

During the peak season, there may be a specific shape of the GPP
curve with two peaks, induced by a decline in GPP caused by dis-
turbances such as drought and the subsequent recovery process
(Fig. 3h) (Zhang et al., 2003). The DLF fitting methods smooth out most
of these values during this period to achieve the global optimum of the
fitting, which leads to overfitting (i.e., a flat peak), ignoring these
normal real changes during this period. This problem is most pro-
nounced in coarse-resolution remote sensing data (Gonsamo et al.,
2018). In contrast, the GAM can tackle the bias/variance tradeoff in the
constraint optimization and prevent this overfitting by automatically
controlling the smoothness of the predictor functions (Larsen, 2015).
Unlike the DLF methods, the shapes of GPP curves are fully determined
by the data in the GAM, which can allow for more flexible and stable
estimations of the various types of GPP curves. As the frequency and
intensity of extreme events (such as droughts and heat waves) increase
in the future (Zhang et al., 2016b), the cases in which the GPP curve
exhibits two peaks during the peak season may increase. Our HGAM
framework has a bigger potential in such situations than the DLF

methods.
The HGAM method was also expected to work for phenological

metrics extraction of NDVI/EVI time series. The Savitzky-Golay filter,
as the first step of HGAM framework, was well established for dealing
with negative NDVI biased by clouds, cloud shadows, and aerosol (Chen
et al., 2004); the GAM fitting method could also effectively capture the
intra- and interannual changes of NDVI/EVI in plant growth using the
flexible and accurate fitting functions mentioned above (Fig. 2h).

4.2. Divergent patterns in PPT shifts in the temperate and alpine grasslands

Although there were some differences in terms of magnitude of the
PPT trends and the areas with significant PPT trends among the dif-
ferent methods and GPP products, the results consistently indicated that
the PPT trends of temperate and alpine grasslands were different. The
springward shift in PPT in the temperate grasslands was confirmed by
two recent studies that mainly focused on northern areas (> 30°N)
(Gonsamo et al., 2018; Park et al., 2019). Despite the insignificant trend
of spatially averaged PPTs in the alpine grasslands, we still find a delay
in the seasonality of photosynthesis hidden in the overall advance in the
PPT in the northern alpine grasslands. For example, the northeastern
part of the Tibetan Plateau has shown a significant autumnward shift in
PPT. Nevertheless, the magnitudes of the PPT trends in temperate
(−6.8 days decade−1) and alpine grasslands (2.9 days decade−1) in our
study were greater than the previously reported ones in the northern
ecosystems (1–2 days decade−1) (Gonsamo et al., 2018; Park et al.,
2019; Xu et al., 2016) (Fig. 5). The differences in slope magnitudes may
be due to the faster warming in the Inner Mongolia Plateau
(0.35 °C decade−1) and Tibetan Plateau (0.16 °C decade−1) than over
the northern hemisphere (0.05 °C decade−1) over the past few decades
(Liu et al., 2018), suggesting large spatial differences or gradients in
PPT dynamics exist among different geographic areas, even within the
same land cover type (i.e., grassland).

Despite the divergent patterns of PPT in the temperate and alpine
grasslands, both temperate grasslands and alpine grasslands showed
consistent increases in the variabilities in annual PPT from 2000 to
2016 at the pixel and regional scales (Fig. 9). Specifically, the trend
analysis of the PPT standard deviations within 7-year moving windows
showed a significant increase in the interannual variability in PPT in
most of the temperate and alpine grasslands (Fig. 9). Consistent

Fig. 7. Relationship between the spring phenology
(start of the growing season, SOS) and peak photo-
synthesis timing (PPT). (a) The upper panel shows
the spatial pattern of the Pearson correlation coeffi-
cients between SOS and PPT determined from VPM
GPP with the hybrid generalized additive model
(HGAM) method. The red area in the inset plot in-
dicates the trends that are statistically significant
(p < 0.05). The bottom panels show the interannual
variation and the corresponding relationships of the
regionally averaged SOS and PPT in temperate
grasslands (b) and alpine grasslands (c), including
the areas where the correlation is insignificant
(p > 0.05). (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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patterns were observed in the analyses with different moving-window
lengths in the range from 5 to 11 years (Fig. S13). This finding could
explain why the areas with significant trends were limited (Fig. 5).

4.3. Synergistic effects of climate and spring phenology on shifts of PPT in
different grasslands

The preseason temperature plays a consistent controlling role in
regulating PPT changes among climatic factors (Fig. 6), which was
consistent with previous studies (Park et al., 2019; Xu et al., 2016).
Interestingly, precipitation and soil moisture have some regulatory
impacts in temperate and alpine grasslands, respectively. In water-
limited temperate grasslands, warming-induced enhancements in eva-
potranspiration likely lead to the earlier-than-normal consumption of
soil water. Therefore, within the background of reduced temperature
and increased precipitation in the preseason (Fig. S14), peak photo-
synthesis of plants occurs earlier to benefit from the relatively high
precipitation and mild temperature in the late spring or early summer
(Maseyk et al., 2010; Park et al., 2019; Schimel, 2010; Xu et al., 2016).
Meanwhile, limited precipitation cannot replenish soil water in a timely
and effective manner. The subsequent soil water deficit hinders plant
growth by reducing the plant maximum photosynthetic rate, conse-
quently leading to an earlier PPT (Hufkens et al., 2016; Liu et al., 2018).

This earlier PPT occurrence of temperate vegetation has been con-
sidered an ecophysiological acclimation that enables vegetation to op-
timize growth before the warmer and drier summer (Schimel, 2010).

In contrast, recent warming in the alpine grasslands did not lead to
an insufficient chilling requirement (Fu et al., 2015; Shen et al., 2015b),
and the higher preseason temperature played a continuously positive
role in plant photosynthesis. The bioactivity of a variety of enzymes for
photosynthetic and dark reactions requires an appropriate temperature
(Fu et al., 2014). Several previous efforts have also shown that
warming-induced greening (Keenan and Riley, 2018) or PPT advance
(Park et al., 2019) in cold, high-latitude ecosystems is associated with a
continuous release of temperature limitations on photosynthetic activ-
ities. Increasing the preseason temperature enhances photosynthesis
due to a warming-stimulated increase in the optimum temperature of
plant photosynthesis (Huang et al., 2019), consequently delaying the
time at which plants reach peak photosynthesis (Liu et al., 2018).
Compared to temperature, the effect of precipitation on PPT was not
significant on the Tibetan Plateau. Although precipitation had some
effect on PPT in limited regions (e.g., northeastern region), permafrost
is a critical water source affecting soil moisture in the alpine grasslands
(Chen et al., 2013). Warming-induced processes in soil enhance the
melting of permafrost, which likely replenishes depleted soil moisture
in the root zone of plants and counteracts excessive plant transpiration

Fig. 8. The spatial pattern of the relationship between peak photosynthesis timing (PPT) and annual GPP in the grasslands of China during 2000–2016 at the pixel
and regional scales. (a) The trend of annual GPP was determined by VPM GPP in the temperate and alpine grasslands of China. (b) The spatial pattern of the Pearson
correlation coefficients between annual GPP and PPT was derived from VPM GPP with the hybrid generalized additive model (HGAM) method. The red area in the
inset plot indicates the trends that are statistically significant (p < 0.05). The middle panels show the interannual variation and the corresponding relationship of the
regionally averaged PPT and annual GPP for the temperate grasslands (c) and alpine grasslands (d), regardless of the significance level of the PPT trend. The bottom
panels show the interannual variation and relationship for the areas with significant PPT trends (p < 0.05) in the temperate grasslands (e) and alpine grasslands (f).
The green colour indicates the Pearson correlation coefficients and corresponding significance between PPT and annual GPP for each grassland type. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and soil evaporation due to rising temperatures. Moreover, surplus
water in the previous year is usually stored in the deep soil layer and
can reduce the soil water deficit in the following drought season
through the hydraulic lifting of the roots and the conversion of capillary
water. These results may also explain why changes in PPT did not re-
spond to precipitation in some areas of the alpine grasslands, and these
relationships can be further explained by the correlation between soil
moisture and PPT in the alpine grasslands (Fig. S8 c; R=0.63,
p < 0.05).

Interestingly, the biological properties of plants are also consider-
able factors influencing PPTs in addition to climatic factors. The posi-
tive and significant relationships between SOS and PPT at both the pixel
and regional scales in our study (Fig. 7) was consistent with the results
of a recent satellite-based study (Gonsamo et al., 2018), that is, an
earlier SOS tends to translate into an earlier PPT. A similar relationship
also exists between the SOS and EOS according to previous studies (Fu
et al., 2014; Liu et al., 2016b). This pattern could be explained by the
following two aspects. The first reason is likely the internal self-regu-
lated mechanism of vegetation, which controls individual plant devel-
opment at the genetic, molecular, and individual levels. Specifically,
the programmed apoptosis mechanism of cells (Lim et al., 2007) and
leaf life span (Reich et al., 1992) will not allow the highly active pho-
tosynthesis of plants to continue to carry on. Second, the SOS affects
subsequent phenological phases by influencing the environmental
conditions in spring and summer (Fu et al., 2014). Specifically, ad-
vances in the leaf-out period can lead to premature soil moisture losses
(Buermann et al., 2013; Fu et al., 2018). Earlier SOS can lead to an
advance in drought events in the prosperous period and a decrease in
peak production, which subsequently causes an advance in the PPT.
Therefore, there may be a connection between spring and summer
phenology, and this effect of spring phenology on peak vegetation
phenology has remarkable implications for understanding and

modeling vegetation phenology (Buermann et al., 2018).

4.4. Consequences of PPT shifts on annual production in both grasslands

The dynamics of PPT explicitly affect the spatiotemporal pattern of
vegetation photosynthetic activity under climate change (Fu et al.,
2014), subsequently affecting annual production (GPPannual) of grass-
lands (Park et al., 2019). Consistent with Park et al. (2019), our study
indicated that the changes in PPT could cause different impacts on
GPPannual, and these effects would depend on different climate and soil
moisture constraints on plant growth (Fig. 8). We verified that the
earlier peak-higher production pattern did exist in the temperate
grasslands, agreeing with a previous study (Gonsamo et al., 2018). In
these circumstances, the earlier onset of carbon uptake was strongly
linked to an earlier onset of peak photosynthesis and higher GPPannual
(Fig. 8). Based on the findings of a previous study, the risk of water
deficit and productivity decline is more likely to occur in the temperate
region, especially in regions where warmer and drier conditions are
dominant (Park et al., 2019). However, the MODIS-based earlier peak-
less production pattern found in warmer temperate vegetation of the
northern hemisphere is not explicitly reflected in our study (Park et al.,
2019).

In the case of warming in alpine grasslands, the advance of the SOS
did not cause earlier PPT but still led to an increase in GPPannual, sug-
gesting that there may be another mechanism to interpret the inter-
annual changes of vegetation productivity in the alpine grasslands. This
possible later peak-higher production pattern can be clearly seen in
alpine grassland areas where the PPT was significantly delayed (Figs. 5,
8b). The pattern may be more related to the lengthening of the growing
season than the increased maximum photosynthetic rate, thereby
leading to an increase in production. These findings in our study are
important for understanding the possible mechanism of interannual
variance in GPPannual.

4.5. Uncertainties and implications

Due to the limitation in the number of available flux tower sites in
the study area, only 13 site-years of data were used for the validation of
PPT. Additionally, the limitation in the length of the study period may
also be a source of uncertainty (Wang et al., 2019). Therefore, the in-
creasing amount of flux tower data used in the future could help to
further refine and calibrate the algorithm of PPT extraction.

In terms of the GPPVPM, GPPBESS and GPPFLUXCOM products, there
are some differences in the magnitudes of the estimated PPT trends and
the areas with significant PPT trends. The reason may be due to dif-
ferences in the models, the input data and the resolutions (Ryu et al.,
2019). These uncertainties and gaps among existing GPP products
imply that the GPP-based PPT can be treated as an indicator for
benchmarking the seasonality of simulated GPP in terrestrial biosphere
models and remote sensing-based GPP models. In addition to GPP, the
satellite-retrieved solar-induced chlorophyll fluorescence (SIF) data can
also be used as a good proxy of photosynthesis due to the high sensi-
tivity of the data and the good consistency with the ecosystem carbon
flux (Song et al., 2018; Wagle et al., 2014; Zhang et al., 2016a).
However, the extreme uncertainties in long-term and interannual var-
iations in satellite-based SIF data caused by sensor degradation issues
limit the application of these data at the regional scale (Ryu et al.,
2019).

Moreover, the grazing and afforestation in the past two decades
were the dominant human intervention practices on the temperate
grasslands, whereas human-driven land use changes were not remark-
able in the alpine grasslands. The 0.05° MODIS-based land cover maps
used to define the grassland extent in this study inevitably include some
shrubs. Therefore, the human intervention process and coarse grassland
information could affect the results. In addition, changes in biodiversity
may also be a factor that could potentially distort the PPT changes, and

Fig. 9. The pattern of linear trend in the variabilities of PPT from 2000 to 2016
at pixel and region scales. (a) The upper panel shows the spatial distribution of
the linear trend of the standard deviations of PPT within the 7-year windows.
The red marked area in the inset plot indicates the regions with statistical
significance (p < 0.05). (b) The bottom panel shows the trend of the standard
deviations of spatially averaged PPT within the 7-year windows in both tem-
perate and alpine grasslands. The year on the horizontal axis is the central year
of the 7-year sliding window that represents the corresponding period (e.g.,
2003 refers to the sliding window from 2000 to 2006). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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such changes could change the vegetation types and/or the dominant
herb communities, resulting in vegetation with different phenological
characteristics.

This study suggests that climatic and biological factors coregulate
the spatiotemporal dynamics of PPT in China's grasslands. Although
significant correlations between climatic drivers and PPT trends were
limited to quite small fractions of the total area, and temperate and
alpine grasslands exhibit opposing patterns of change. Consequently, it
is possible that the distinction of temperate vs. alpine grasslands cannot
fully explain the observed patterns and the underlying situation is more
complicated. Therefore, more factors, such as different vegetation
types, topographic characteristics, and soil properties, could also affect
the spatiotemporal pattern of vegetation peak photosynthesis across
different biomes (Misra et al., 2018). Under the background of in-
creasing extreme climate events (Zhou et al., 2017), a more compre-
hensive understanding of the shift in vegetation peak phenology needs
more studies (Park et al., 2019). The divergent pattern observed be-
tween temperate and alpine grasslands in China is likely to open new
lines of research into plant peak phenology and ecosystem functioning
in grasslands and other vegetation types via remote sensing observa-
tions and field experiments, as well as model simulations on seasonal to
decadal timescales.

5. Conclusions

In this study, a new HGAM method and the remote sensing-based
VPM GPP product were applied to investigate the spatial and temporal
patterns of PPT changes, their drivers, and their effects on annual GPP
in China's grasslands from 2000 to 2016. The results showed that the
temperate grasslands experienced a significant springward shift in PPT,
whereas the alpine grasslands experienced an emerging delay in PPT.
The interannual variations in PPT in most of the temperate and alpine
grasslands were found to be positively associated with the preseason
temperature. In addition, positive correlations existed between pre-
season precipitation and PPT in the temperate grasslands and between
preseason soil moisture and PPT in the alpine grasslands. Moreover, we
found a positive influence of spring phenology (e.g., SOS) on PPT across
grasslands in China, which revealed that spring phenology is also an
important factor influencing PPT shifts. We verified that the earlier
peak-higher production pattern existed in temperate grasslands but not
in alpine grasslands in China. This study provides important implica-
tions for understanding the spatiotemporal dynamics of vegetation
photosynthetic activity in response to climate change in different eco-
systems and could contribute to benchmarking the seasonality of si-
mulated production in terrestrial biosphere models. This study expects
to shed light on the mechanism of peak vegetation activities and the
improvement of terrestrial ecosystem models, especially the simula-
tions of terrestrial carbon uptake.
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