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A B S T R A C T

South America has the largest tropical rainforests and the richest biodiversity in the world. It is challenging to
map tropical forests and their spatio-temporal changes because forests are facing fragmentation from human
activities (e.g., logging, deforestation), drought, and fire, as well as persistent clouds. Here we present a robust
approach to map forests in South America during 2007–2010 and analyze the consistency and uncertainty
among eight major forest maps in South America. Greenness-relevant MOD13Q1 NDVI and structure/biomass-
relevant ALOS PALSAR time series data recorded 2007 through 2010 were coupled to identify and map forests at
50-m spatial resolution. Both area and spatial comparison were conducted to analyze the consistency and un-
certainty of these eight forest maps. Annual 50-m PALSAR/MODIS forest maps were generated during
2007–2010 and the total forest area in South America was about 8.63 × 106 km2 in 2010. Large differences in
total forest area (8.2 × 106 km2–12.7 × 106 km2) existed among these forest products, especially in the forest
edges, semi-humid tropical, and subtropical regions. Forest products generated under a similar forest definition
had similar or even larger variation than those generated with contrasting forest definitions. We also find out
that one needs to consider leaf area index as an adjusting factor and use much higher threshold values in the
Vegetation Continuous Field (VCF) datasets to estimate forest cover areas. Analyses of PALSAR/MODIS forest
maps in 2008/2009 showed a relatively small rate of loss (3.2 × 104 km2 year−1) in net forest cover, similar to
that of FAO FRA (3.3 × 104 km2 year−1), but much higher annual rates of forest loss and gain. The rate of forest
loss (0.195 × 106 km2 year−1) was higher than that of Global Forest Watch (0.081 × 106 km2 year−1).
PALSAR/MODIS forest maps showed that more deforestation occurred in the unfragmented forest areas. Caution
should be used when using the different forest maps to analyze forest loss and make policies regarding forest
ecosystem services and biodiversity conservation. The integration of PALSAR and MODIS images during
2007–2010 provides annual maps of forests in South America with improved accuracy and reduced uncertainty.

1. Introduction

Tropical forests are a huge reservoir of terrestrial carbon and esti-
mated to hold 230–260 Pg C, or about 40–60% of the carbon contained
in the world's terrestrial vegetation (Baccini et al., 2012; Pan et al.,
2011; Saatchi et al., 2011; Zarin et al., 2016). Tropical forests are
susceptible to multiple disturbances from logging (Fraser, 2014;
Matricardi et al., 2013), expansion of industrial forest plantations and
agricultural land (le Maire et al., 2014; Morton et al., 2006), drought
(Brando et al., 2014), and fires (Fanin and van der Werf, 2015).

Therefore, it is important for the scientific community to design and
implement operational forest monitoring, reporting, and verification
(MRV) systems that are reproducible, consistent, and accurate at na-
tional and continental scales, which is also a requirement of a successful
REDD+ (Reduce Emissions from Deforestation and Forest Degrada-
tion) mechanism under the United Nations Framework Convention on
Climate Change (UNFCCC). There is an urgent need for high accuracy
forest maps so that land managers, policy makers, and scientists can
investigate the changes in carbon fluxes, carbon stock, and ecological
services, such as the degradation in the carbon stocks near tropical
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forest edges (Chaplin-Kramer et al., 2015), habitat fragmentation
(Haddad et al., 2015), and the effects of conservation policy on forest
recovery (Viña et al., 2016).

Spaceborne remote sensing technology has the advantage of ob-
serving large areas of Earth's landscape at high temporal resolution with
frequent revisits, and therefore is widely used for global and continental
forest mapping. Optical remote sensing images, which have been col-
lected since the 1970s, are the major data source for forest mapping
because they are relatively easy to process and interpret. The optical
sensor-based forest products are mainly produced based upon the 1000-
m Advanced Very High Resolution Radiometer (AVHRR) (Achard et al.,
2001), 500-m and 250-m Moderate Resolution Imaging Spectro-
radiometer (MODIS) (Friedl et al., 2010; Hansen et al., 2003;
Townshend et al., 2011), and 30-m Landsat (Hansen et al., 2013; Kim
et al., 2014). Selective logging is common in tropical forests and cannot
be observed by relatively coarse spatial resolution images, especially for
AVHRR and MODIS images (Asner et al., 2005). Active microwave re-
mote sensing images are becoming more applicable to tropical forest
mapping, especially as wall-to-wall global observations become avail-
able, such as C-band Sentinel-1, L-band Japanese Earth Resource Sa-
tellite 1 (JERS-1), and Advanced Land Observing Satellite (ALOS)
Phased Array type L-band Synthetic Aperture Radar (PALSAR). Active
microwave sensors can penetrate clouds and smoke haze, and monitor
land surface conditions day and night without interference from
weather conditions. The short wavelength X- and C-band SAR have
been applied to forest mapping (Ranson and Sun, 1997), although these
bands are easily saturated at the forest canopy. The L-band ALOS
PALSAR has a long operating wavelength (23.6 cm), which is sensitive
to forest structure and biomass under the canopy and is well suited to
tropical forest monitoring. PALSAR imagery has also been successfully
applied for global and regional forest mapping (Dong et al., 2012; Qin
et al., 2016; Shimada et al., 2014).

Mapping tropical forests with high accuracy, either from optical or
active microwave remote sensing, is very challenging. Tropical forest
loss and recovery is occurring at high rates. For example, Brazil ex-
perienced a decreasing trend in forest cover from 2000 to 2012, with
the annual average rate about 3 × 104 km2 year−1 (Hansen et al.,
2013). Conversely, the industrial forest plantations are expanding due
to the increased demand for pulp and wood, such as Eucalypt. The
Eucalypt plantations have a short clear-cut and afforestation rotation in
Brazil (le Maire et al., 2014). Time series remote sensing images are
preferred for tracking these fast changes in forest cover. The availability
of data from optical remote sensing is largely restricted by persistent
clouds, which is the major barrier to tropical forest mapping (Achard
et al., 2007; Asner, 2001). Many recent studies have generated forest
cover maps by combining the increasing number of good quality optical
remote sensing images from multiple years (European Space Agency,
2016; Hansen et al., 2013). However, the use of images from multiple-
year periods might not detect intra-annual changes of forest cover in the
Amazon Basin. A recent study evaluated eight global forest cover maps
and showed that relatively large uncertainty existed among current
forest maps (Sexton et al., 2015), particularly in the tropical zone
(hotspots). Most of these forest maps are produced using image data
from a single source. Single-data source based forest maps have mod-
erate to large commission and omission errors because of complex
landscapes. Different land cover types may have similar phenology and
structural features, and the same land cover types may have different
greenness attributes in different seasons.

Optical remote sensing can track the phenology of land cover types
and active microwave remote sensing image can observe the structure
and biomass of forests. There is a need to integrate active microwave
and optical remote sensing imagery to map tropical forests (Dong et al.,
2013; Qin et al., 2015; Reiche et al., 2016). Several studies have de-
monstrated the potential of combining SAR and optical remote sensing
images for mapping land cover types (e.g., ice shelf change, urban
areas, crops, and forests) (Ban, 2003; Khazendar et al., 2007; Qin et al.,

2017; Ranson et al., 2003) and forest biomass (Lucas et al., 2006). The
associated technical challenges of fusing microwave and optical remote
sensing images for mapping changes in forest cover has also been ad-
dressed by several recent studies (Lehmann et al., 2015; Reiche et al.,
2015). These studies have demonstrated a reduction in cloud–induced
gaps in the observational data and improved accuracy in forest cover
and forest cover change, even for areas with persistent cloud cover.
However, these data fusion approaches were only demonstrated at a
local scale and were not applied and tested for large-scale forest map-
ping in South America (Reiche et al., 2016).

In this study, we selected South America as the study area, which
encompasses the Amazon Basin and contains the world's largest area of
tropical rainforests and hosts the richest biodiversity (Malhi et al.,
2008). South America had the highest forest loss rate with over 50% of
tropical forest loss occurring since 2000 (Hansen et al., 2013). Both the
forest loss rate and the net forest loss rate decreased after 2005, espe-
cially between 2010 and 2015 (Hansen et al., 2013; Keenan et al.,
2015). The objectives of this study are three-fold. First, we produce
annual maps of forest in South America at the spatial resolution of 50 m
through the integration and analyses of PALSAR images (50-m spatial
resolution) and time series MODIS NDVI images (250-m spatial re-
solution) during 2007–2010. This reflects (1) an improvement in terms
of optical and microwave image data integration over a previous work
in Southeast Asia that used only PALSAR images (Dong et al., 2012),
and (2) an effort for expansion of the same mapping approach used in
China (Qin et al., 2015) and monsoon Asia (Qin et al., 2016) towards
global mapping of forests. Second, we compare and analyze the con-
sistency and uncertainty among eight forest cover products for the year
2010, which were generated from various data sources and methods.
Third, we quantify the spatio-temporal changes of forests in South
America from 2008 to 2009, based on the resultant annual PALSAR/
MODIS forest maps. This study provided improved forest cover maps
for the user community of forests maps, which can be used for the
development and application of forest management techniques in South
America.

2. Materials and methods

We built a detailed workflow for forest cover mapping and forest
cover product comparison in South America (Fig. 1). This workflow
included two major components. First, we produced the annual 50-m
PALSAR/MODIS forest maps from 2007 through 2010 based on the
integration of PALSAR and MODIS NDVI data. Second, we analyzed the
area and spatial differences in forest cover estimation from the
PALSAR/MODIS forest cover map and seven other major forest cover
products in 2010.

2.1. Study area

South America is mainly located from 56° S to 12° N, from 35° W to
81° W and covers an area of about 18 million square km2. The elevation
ranges from sea level to over 7000 m. South America can be divided
into three major natural regions: the Andes Mountains, Eastern
Highlands, and Plains. South America has humid tropical and semi-
humid tropical climate in the north and humid subtropical climate in
the southeast.

2.2. PALSAR data and pre-processing

The 50-m ALOS PALSAR Fine Beam Dual polarization (FBD) product
from 2007 through 2010 were downloaded from the Earth Observation
Research Center, Japan Aerospace Exploration Agency (JAXA). PALSAR
HH and HV backscatter data are slope corrected and ortho-rectified
with a geometric accuracy of about 12 m, and radiometrically cali-
brated. The Digital Number (DN) values (amplitude values) were con-
verted into gamma-naught backscattering coefficients in decibels (γ°)
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using a calibration coefficient.

= × < > +°γ log DN CF10 10
2 (1)

where CF is the absolute calibration factor of −83 (Shimada et al.,
2009). PALSAR Difference and Ratio layers were calculated as:

= −Difference HH HV (2)

=Ratio HH
HV (3)

The visual interpretation of the false color composition of PALSAR
HH, HV, and Difference (Fig. 2A) show their potential for mapping
tropical forests from other land cover types, especially sparsely vege-
tated land.

2.3. MODIS NDVI data and pre-processing

MODIS/Terra MOD13Q1 product (Vegetation Indices 16-Day L3
Global 250 m) for South America from 2007 through 2010 was down-
loaded. The MOD13Q1 is a composite product with the best quality
pixel in each 16-day window from daily observation. NDVI was calcu-
lated based on the red and near-infrared reflectance. The pixel quality
and reliability layers in MOD13Q1 product were used to further exclude
the poor-quality pixels in time series analysis. The number and ratio of
good-quality observations from MOD13Q1 NDVI have high spatial
difference in South America (Fig. 2B–C). About 52% of pixels had 15
(60%) or less good-quality observations annually and most of them
were in the Amazon Basin. About 48% of pixels had 16 (60%) or more
annual, good-quality observations in the southern portion of the study
area. The 16-day NDVI layers for a year were used to calculate the
annual maximum NDVI (NDVImax) values for each pixel from 2007
through 2010 (Fig. 2D).

2.4. PALSAR/MODIS forest mapping approach

According to the FAO, forest is defined as land with tree canopy
cover> 10% and with a minimum tree height of five meters (Food and
Agriculture Organization of the United Nations, 2012). The L-band
ALOS PASLAR wavelengths have the capability to penetrate the tree
canopy and interact with the tree trunks and branches. PALSAR data

shows higher volume backscatter signals for forests than those of
cropland, grassland, and water bodies. Therefore, PALSAR observations
are sensitive to forest biomass and structure. Annual PALSAR HH and
HV values are relatively stable from 2007 through 2010 in South
America (Fig. 3A–B). The threshold values for the PALSAR-based forest
mapping at 50-m spatial resolution were described in a previous study
for monsoon Asia (Qin et al., 2016) and mainland Southeast Asia (Dong
et al., 2012). Some land cover types, e.g., buildings, rocky land, and
parts of bare land also have obvious structural features similar to forests
and are easily confused with the PALSAR-based forests. Almost all the
forest pixels with 10% or higher forest cover had NDVImax values equal
to or larger than 0.5 and bare land dominated pixels had very low
NDVImax values based on the relationship between visually interpreted
Landsat-based land cover types and MOD13Q1 NDVImax in monsoon
Asia (Qin et al., 2016). To reduce these commission errors for forest
mapping, we combined PALSAR and MOD13Q1 NDVImax to generate
annual maps of PALSAR/MODIS forests at 50-m spatial resolution in
South America (Fig. 3C–D) using the thresholds: −15 ≤ HV ≤−9,
3≤ Difference ≤ 7, 0.35 ≤ Ratio≤ 0.75, and NDVImax ≥0.5 (Qin
et al., 2016).

We quantified the total area and mapped the spatial characteristics
of forest cover change in South America from 2008 to 2009. First, we
identified the forest/non-forest cover in individual years from 2007
through 2010 for each pixel using the proposed thresholds. Then we
applied a three-year moving window filter to check temporal con-
sistency in forest and non-forest over years. Out of the 4 year data, we
have a total of 12 permutations (P(4,2) = 4!/(4–2)!) to reduce the
uncertainty of forest change detection, which has been demonstrated in
other land cover studies (Li et al., 2015; Yuan et al., 2005). This post-
processing could not be applied to the forest maps in the first year
(2007) and the last year (2010). Therefore, we reported forest change in
South America during the period of 2008–2009. We generated maps of
forest loss, forest gain, consistent forest, and consistent non-forest in
South America during 2008–2009.

2.5. Accuracy assessment of PALSAR/MODIS 50-m forest map in 2010

To assess the accuracy of the PALSAR/MODIS forest maps and the
other forest maps, we used two sets of validation samples from different

Fig. 1. The workflow of forest cover mapping and forest cover products comparison from multiple sources in South America.
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sources, including (1) 500-m by 500-m Region of Interests (ROIs) in-
terpreted from Google Earth images, and (2) the Global Land Cover
Validation Reference Dataset from U.S. Geological Survey (USGS)
(Olofsson et al., 2012; Pengra et al., 2015; Stehman et al., 2012).

We used the workflow to collect the ground reference data in South
America for map accuracy assessment, which was reported in detail in
the previous study (Qin et al., 2016). First, we generated twenty
500 × 500 m ROIs within one 1° by 1° (latitude and longitude) grid cell

using a simple random sample approach. Second, we converted those
ROIs from the shapefile format into the kml file format and overlaid
them on 2.5-m SPOT5 and 2-m WorldView-2 images in Google Earth.
The screenshot of the very high spatial resolution (VHR) images within
each ROI was automatically downloaded from Google Earth by a freely
available software (Quick Macro). Third, we created a protocol for vi-
sual interpretation of forest and non-forest ROIs and then provided a
training session for researchers participating in data collection. Six

Fig. 2. Input datasets for PALSAR/MODIS forest product. A) The spatial distribution of the false-color composite of ALOS PALSAR in 2010: R (HH), G (HV), and B (HH - HV). B) MODIS:
number of good quality observations in 2010; C) MODIS: ratio of good-quality observations in 2010. D) The spatial distribution of MODIS maximum NDVI derived from MOD13Q1
product in year 2010. E) The spatial distribution of the validation samples derived from high resolution images in Google Earth and 55 sample blocks from the Global Land Cover
Validation Reference Dataset.
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researchers went through each ROI to identify and delineate forest and
non-forest ROI, using these three step procedure. Step 1 is to choose the
ROI that is covered by VHR images: If VHR images are not available for
a ROI, the interpreters exclude the ROI from visual interpretation. Step
2 is to delineate forest/non-forest ROI. As these 500 × 500 m ROIs
were further divided into about 10 × 10 50 × 50 m sub-grids, forest/
non-forest ROIs are required to meet one of these two criteria: If a
500 × 500 m ROI is covered by 90% or more tree cover, this ROI is
identified as forest; the same criteria applies for non-forest selection.
Step 3 is to have quality control of ROIs and visual interpretation. These
researchers also served as quality control person for the other re-
searchers and double checked the accuracy of their forest and non-
forest selections. After the first-round visual interpretation, we loaded
those ROIs and double checked their quality by another group member.
Finally, we got 2405 forest ROIs (220,924 pixels) and 2513 non-forest
ROIs (256,205 pixels) (Fig. 2E), and 19.7%, 59.5%, and 20.8% of VHR
images were acquired during 2007–2010, 2011–2014, and other years,
respectively. To reduce the uncertainty from the difference in dates of
VHR images, we used the part of selected ROIs in specific year to va-
lidate the annual PALSAR/MODIS forest maps, respectively (Section
3.1). We calculated the user's, producer's, and overall accuracy of the
PALSAR/MODIS forest maps and their standard errors (Olofsson et al.,
2014).

We also analyzed the accuracy for all the forest maps in South
America in 2010 using the Global Land Cover Validation Reference
Dataset (https://landcover.usgs.gov/glc/SitesDescriptionAndDownloads.
php). This dataset was produced from VHR images (QuickBird-2,
WorldView-1/2, IKONOS-2, and GeoEye-1) mainly from 2010, collected
based on a stratified random sample. There are 55 sites in South America
and each of them covers an area of about 5 × 5 km at 2 m resolution. We
used four steps to carry out the accuracy assessment as the followings: (1)
we grouped the seven land cover classes (tree, water, barren, other

vegetation, cloud, shadow, and ice & snow) into three different layers
(tree, non-tree, and bad observations) for each site map and then con-
verted their Universal Transverse Mercator (UTM) projection into “equal-
area projection” (i.e., South_America_Albers_Equal_Area_Conic); (2) we
aggregated the tree, non-tree, and bad observations layers into the same
spatial resolutions for each forest map product and calculated their
percentage area fraction for each pixel; (3) we excluded those pixels
with> 1% area of bad observations; and (4) we used the specific tree
cover criteria from 10%, 15%, to 60% to assess the accuracy of different
forest maps and calculated their user's, producer's, and overall accuracy
and their standard errors (Olofsson et al., 2014).

2.6. Comparison of multiple forest map products in South America

We selected seven forest products for the year 2010, which were
freely available to the public and widely used (Fig. 4): 1) The JAXA
forest/non-forest map (JAXA): PALSAR FBD data in the growing season
in 2010 was used to map forest through region-specific HV threshold
values (Shimada et al., 2014). Available at http://www.eorc.jaxa.jp/
ALOS/en/palsar_fnf/fnf_index.htm. 2) Landsat tree canopy cover from
Global Forest Watch datasets (GFW): time series Landsat ETM+ images
in main growing season of circa 2010 were used to retrieve 30-m GFW
tree cover 2010 through a decision tree algorithm based on the training
datasets, selected percentile values, and the slope of linear regression of
band reflectance value versus image date (Hansen et al., 2013). Available
at https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.
php. 3) Landsat Percent Tree Cover map from Vegetation Continuous
Fields (Landsat VCF): the good-quality Global Land Survey (GLS) Landsat
images and MODIS cropland layer were included to rescale MODIS VCF
into 30-m Landsat VCF using a regression tree model and to improve
accuracy in agricultural area (Sexton et al., 2013). Available at http://
glcf.umd.edu/data/landsatTreecover/. 4) MODIS VCF: this product was

Fig. 3. The distribution of PALSAR HH and HV and MODIS NDVImax in South America. A) and B) The histogram of ALOS PALSAR HH and HV from 2007 to 2010. C) and D) 2-dimension
scatter plots of MODIS NDVImax vs ALOS PALSAR HH gamma0 and MODIS NDVImax vs ALOS PALSAR HV gamma0 in South America in 2010.
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generated from the average values of thirty independent VCF products,
which were first generated using regression tree models based on the
thirty independent samples from the updated training dataset and a 16-
day MODIS surface reflectance composite, brightness temperature, and
the MODIS Global 250-m Land/Water Map (Townshend et al., 2011).
Available at http://glcf.umd.edu/data/vcf/. 5) Land Cover from Eur-
opean Space Agency (ESA) Climate Change Institute (CCI): 300-m time
series MEdium Resolution Imaging Spectrometer (MERIS) imagery
during 2003–2012 and 1-km SPOT-VEGETATION (2008–2012) time
series imagery were used to generate ESA CCI land cover map (European
Space Agency, 2016). Available at https://www.esa-landcover-cci.org/?
q=node/158. 6) Land Cover Type Yearly L3 Global 500 m SIN Grid
(MCD12Q1): 500-m 32-day average nadir bidirectional reflectance dis-
tribution function (BRDF)-adjusted land surface reflectance (NBAR), en-
hanced vegetation index (EVI), land surface temperature (LST), and an-
nual metrics (minimum, maximum, and mean values) for EVI, LST and
NBAR bands were used to identify and generate land cover types through
a supervised classification approach (Friedl et al., 2010). Available at

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
mcd12q1. 7) Forest Resources Assessment (FRA) from the Food and
Agriculture Organization (FAO) of the United Nations: country statistics
data of forests in 2010 were collected to generate FAO FRA 2010 (Food
and Agriculture Organization of the United Nations, 2012). We compared
their total areas and spatial distributions of forests with the PALSAR/
MODIS forest map produced in this study in South America. Table 1
summarizes of these forest datasets along with our PALSAR/MODIS
forest map.

2.6.1. Area comparison of multiple forest products
We calculated and compared the total forest area from the PASLAR/

MODIS forest map and the selected forest products under different
percentages of tree cover (≥10%, 15%, 30%, 45%, and 60%) as spe-
cified by each product's definition of forest at the continental and
country scales in South America for 2010. The Root Mean Square Error
(RMSE) and linear relationships were calculated to show their differ-
ences in forest areas at the country scale:

Fig. 4. The spatial distribution of forest fraction cover maps at
1500 m in South America.
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where, xi is the forest area of the ith country from the PASLAR/MODIS
forest map in 2010; yi is the forest area of the ith country from the
selected forest product in 2010; n is the total number of countries in
South America.

2.6.2. Spatial comparison (pixel level) of multiple forest maps
We applied a cross comparison approach to quantify the spatial

consistency and difference between the eight forest maps under dif-
ferent forest definitions. Cross comparison is a method to reveal the
uncertainty in global maps where reference data is sparse or not
available (Herold et al., 2008). To facilitate the spatial comparison, we
first re-projected all the forest maps into equal-area projection (i.e.,
South_America_Albers_Equal_Area_Conic from ESRI) and then ag-
gregated the 30-m GFW and Landsat VCF forest maps, the 50-m
PALSAR/MODIS and JAXA forest maps, the 250-m MODIS VCF forest
maps, the 300-m ESA CCI forest map, and the 500-m MCD12Q1 forest
map into 1500-m resolution. Each 1500-m pixel has the percentage of
forest cover which was averaged from the original datasets. We calcu-
lated the forest fraction differences between PALSAR/MODIS forest
map and JAXA, GFW, Landsat VCF, and MODIS VCF forest maps de-
fined with tree cover ≥10% in South America.

3. Results

3.1. The PALSAR/MODIS tropical forest map of South America in 2010

The PALSAR/MODIS forest map showed the spatial distribution of
forests in South America in 2010 (Fig. 5). The Amazon Basin had large
areas of forests and most of the land was covered by> 80% forests at
the spatial resolution of 1500 m. Northern Colombia, Venezuela, and
southeast Brazil were dominated by pasture and savanna ecosystems,
but these regions had a small fraction of relatively highly fragmented
forests. South America's west coast (Andes Mountains) and southern
Argentina had few forests. The overall accuracy of the PALSAR/MODIS
forest map for 2010, based on the ground references in 2010 (Table 2),
was about 98.01%(± 0.12), and the user's accuracy and the producer's
accuracy were about 99.76%(± 0.07) and 95.55%(± 0.07), respec-
tively. The overall, user's, and producer's accuracy of the PALSAR/
MODIS forest map in 2010, based on the Global Land Cover Validation
Reference Dataset (Table S1), were about 87.13%(± 0.09),
95.15%(± 0.09), and 80.98%(± 0.06), respectively. The total area of
the PALSAR/MODIS forests were about 8.63 × 106 km2 in South
America in 2010, or about 48.7% of the total land area. Brazil had the
largest forest area about 4.77 × 106 km2, or about 55% of the total
forest area in South America, followed by Peru and Colombia (both
with 0.75 × 106 km2, 8.69%) (Table 3).

3.2. A comparison of the forest cover maps from multiple sources

We compared forest cover at the continental and country scales in
South America in 2010 under the definition of tree cover ≥10%. At the
continental scale, the forest area estimated from the PALSAR/MODIS
forest map (8.63 × 106 km2) was similar to FAO FRA (8.64 × 106 km2)
and JAXA (8.19 × 106 km2) forest products, but much smaller than
GFW (9.56 × 106 km2), Landsat VCF (11.50 × 106 km2), and MODIS
VCF (12.70 × 106 km2) (Fig. 6A). At the country scale, the PALSAR/
MODIS forest map had very good linear relationships with JAXA, Giri
(Giri and Long, 2014), FAO FRA, and GFW in forest area estimates, with
the slope ranging from 0.92 to 1.09 and a RMSE range from
0.05 × 106 km2 to 0.13 × 106 km2 (Fig. 6B). Landsat VCF and MODIS
VCF overestimated about 29% and 46% of total forest area, respec-
tively, and had relatively larger RMSEs (0.40 × 106 km2 and
0.63 × 106 km2), especially in Brazil (1.37 × 106 km2 andTa
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2.24 × 106 km2) and Argentina (0.39 × 106 km2 and 0.62 × 106 km2)
(Fig. 6C).

We evaluated the consistency among the eight maps at the pixel
scale (Fig. 7). PALSAR/MODIS forest map and JAXA forest map showed
very good agreement in their spatial distribution and about 90% of the
pixels were in agreement on forest cover (Fig. 7A). The PALSAR/MODIS
forest map had lower forest cover in the northern region of South
America than the JAXA forest map, where the landscape is dominated
by sparsely vegetated land, and had higher forest cover in the sub-
humid and subtropical regions than the JAXA forest map. The PALSAR/
MODIS forest map in 2010 had relatively large differences in the spatial
distribution of forests when compared to optical remote sensing based
forest maps (GFW, Landsat VCF, and MODIS VCF) for South America.
The GFW and PALSAR/MODIS forest maps were in close agreement in
the spatial distribution of forest cover with about 86% of the pixels
being consistent (Fig. 7B). When compared with PALSAR/MODIS forest

cover, Landsat VCF and MODIS VCF overestimated forest cover ex-
tensively at the edge of rainforest and in the semi-humid and sub-
tropical regions, with only about 69% and 60% of forest pixels being
consistent (Fig. 7C and D).

3.3. Annual loss, gain, and net change of forest areas in South America
during 2008–2009

The total area and spatial distribution of the PALSAR/MODIS forest
maps were relatively stable and consistent in South America between 2008
and 2009 (Figs. 8–9). Consistent forest and non-forest areas were
8.50 × 106 km2 and 8.87 × 106 km2, respectively, which is about 47.95%
and 50.04% of the total land area in South America. Analyses of PALSAR/
MODIS forest maps in 2008 and 2009 showed a small net loss in total
forest cover of about 0.39% of the total forest area in South America
(0.32 × 105 km2 year−1). The annual rates of forest loss

Fig. 5. The spatial distribution of the PALSAR/MODIS forest map in South America in 2010.

Table 2
Accuracy assessment for the PALSAR/MODIS forest maps.

Year Classification Ground reference User's accuracy (%) Producer's accuracy (%) Overall accuracy (%)

Forest Non-forest Total

2007 Forest 9591 107 9698 98.90 (± 0.21) 94.77 (± 0.19) 96.72 (± 0.25)
Non-forest 529 9190 9719 94.56 (± 0.45) 98.85 (± 0.47)
Total 10,120 9297 19,417

2008 Forest 4713 10 4723 99.79 (± 0.13) 98.29 (± 0.13) 99.21 (± 0.15)
Non-forest 82 6799 6881 98.81 (± 0.26) 99.85 (± 0.26)
Total 4795 6809 11,604

2009 Forest 8395 36 8431 99.57 (± 0.14) 92.67 (± 0.12) 96.48 (± 0.23)
Non-forest 664 10,812 11,476 94.21 (± 0.43) 99.67 (± 0.45)
Total 9059 10,848 19,907

2010 Forest 16,925 41 16,966 99.76 (± 0.07) 95.55 (± 0.07) 98.01 (± 0.12)
Non-forest 788 23,996 24,784 96.82 (± 0.22) 99.83 (± 0.22)
Total 17,713 24,037 41,750
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(1.95 × 105 km2 year−1) and gain (1.62 × 105 km2 year−1) were high,
about 2.34% and 1.95% of the total forest area, respectively. Therefore,
our results suggest that forests went through extensive disturbance in
South America. Brazil had the largest rates of forest loss
(1.07 × 105 km2 year−1) and gain (0.95 × 105 km2 year−1) out of all
South American countries. Brazil and Argentina had the largest rate of net
forest loss at about 0.11 × 105 km2 year−1 and 0.08 × 105 km2 year−1,
respectively. The forest loss moved from the forest edges into the Amazon
Basin area where intact forests were dominated.

4. Discussion

4.1. The need for accurate forest cover maps by user communities

Forest types, areas, and biophysical parameters (e.g., canopy height,
biomass, and leaf area index) is important information for user com-
munities whose efforts have been to reduce carbon dioxide emissions,
enhance terrestrial carbon sequestration, and protect biodiversity from
deforestation and forest degradation (REDD+). The user communities
have used different forest cover maps to investigate the degradation in
the carbon stocks near tropical forest edges (Chaplin-Kramer et al.,
2015) and habitat fragmentation (Haddad et al., 2015). In this study,
we compared the total area and spatial distribution of multiple forest
cover products. The results showed that large uncertainties existed
among these forest products, especially in those areas with relatively
low forest cover. These uncertainties could affect the perception of user
communities on studies that investigated the effects of forest areas and
fragmentation on carbon cycle, biodiversity, and conservation. For ex-
ample, a recent study in Rondonia, Brazil assessed how the extent and
configuration of remnant forests in replicate 10,000 ha landscapes had
affected the occurrence of some Amazonian mammals and birds
(Ochoa-Quintero et al., 2015). Those regions with low forest cover (i.e.,
seasonally dry forest) often harbor high biodiversity but their forests
are highly threatened with only 10% of their original extent remaining
in many countries (Banda-R et al., 2016). Therefore, it is imperative to
have accurate and updated forest cover maps at high spatial resolutions
(< 100 m) with reduced uncertainty. Several studies have investigated
what factors contribute the most to the uncertainties of forest cover
maps at regional and global scales (Kaptue Tchuente et al., 2011;
Sexton et al., 2013). Forest definition was considered to be the major
contribution to the uncertainty and difference in the area and spatial

distribution of forests among various global forest cover maps (Sexton
et al., 2015). Other studies suggested that image data and mapping
algorithms are also important factors (Dong et al., 2012; Kaptue
Tchuente et al., 2011; Qin et al., 2016; Qin et al., 2015).

4.2. Improved forest cover maps from (1) optical images and (2) vegetation
continuous field (VCF) concept

It is challenging to accurately map forests from optical images with
coarse spatial resolutions in heterogeneous landscapes (Lu and Weng,
2007). The 500-m or 250-m MODIS and 300-m MERIS datasets could
overestimate or under-estimate forest area and spatial extent in land-
scapes with low tree cover and these datasets are not sensitive to
fragmentation caused by selective logging (Fig. 10) (Asner et al., 2005).
Compared to high spatial resolution forest maps, coarse spatial re-
solution forest maps overestimate dense forest area and forest edge but
underestimate areas that are sparsely forested (Figs. 4 and 10). Based
on the analysis of 55 Global Land Cover Validation Reference Dataset
site maps, high spatial resolution forest maps can capture the details of
land cover and reduce the number of mixed pixels. About 45%, 15%,
and 40% of their pixels have tree cover values between 0 and 0.1,
0.1–0.9, and 0.9–1.0, respectively. While coarse spatial resolution forest
maps have more mixed pixels, about 35%, 30%, and 35% of pixels have
tree cover values between 0 and 0.1, 0.1–0.9, and 0.9–1.0, respectively.
Previous studies showed that sparsely forested areas have relatively
large uncertainty (Sexton et al., 2015), therefore, coarse spatial re-
solution forest maps are likely to have more uncertainty in forest area
and spatial patterns. From Fig. 6A, high spatial resolution forest maps
have relatively small forest area ranges and coarse spatial resolution
forest maps have relatively large forest area ranges.

In recent years, the VCF concept has been widely used in land cover
mapping and three global VCF-based forest cover data products have
been generated: MODIS VCF (DiMiceli et al., 2011), Landsat VCF
(Sexton et al., 2013), and GFW (Hansen et al., 2013). As shown in
Fig. 6A, when a 45% VCF threshold value is used, the total forest area
estimated from the GFW (8.64 × 106 km2) is very close to the forest
area estimates from the FAO FRA 2010 (8.64 × 106 km2), JAXA
PALSAR (8.19 × 106 km2), and PALSAR/MODIS (8.63 × 106 km2)
products, which all use 10% forest area cover in forest definition. This
agreement between GFW (45%) and PALSAR-based forest maps is not a
coincidence. Optical and microwave remote sensing images measure

Table 3
The forest area in different countries and regions in South America from multiple data sources in 2010 (×106 km2).

Tree cover BRA COL PER BOL VEN ARG GUY PRY ECU CHL SUR French Guiana URY Falkland Islands Total area

≥10% PALSAR/MODIS 4.77 0.75 0.75 0.60 0.55 0.28 0.19 0.18 0.17 0.16 0.13 0.08 0.01 0.00 8.63
JAXA 4.36 0.78 0.76 0.59 0.57 0.22 0.19 0.15 0.17 0.17 0.14 0.08 0.01 0.00 8.19
GFW 5.20 0.84 0.80 0.65 0.59 0.42 0.19 0.22 0.20 0.21 0.14 0.08 0.02 0.00 9.56
Landsat VCF 6.14 1.04 0.83 0.74 0.75 0.68 0.20 0.32 0.21 0.30 0.14 0.08 0.07 0.01 11.50
MODIS VCF 7.01 0.99 0.85 0.75 0.77 0.91 0.20 0.35 0.22 0.31 0.14 0.08 0.10 0.01 12.70
Giri 4.91 0.76 0.78 0.64 0.54 0.37 0.19 0.22 0.18 0.21 0.14 0.08 0.02 – 9.03
FAO FRA 5.2 0.60 0.68 0.57 0.46 0.29 0.15 0.18 0.10 0.16 0.15 0.08 0.02 0.00 8.64

≥15% ESA CCI 4.17 0.65 0.78 0.60 0.44 0.34 0.18 0.22 0.16 0.18 0.14 0.08 0.01 0.00 7.94
GFW 5.19 0.84 0.79 0.65 0.59 0.42 0.19 0.22 0.20 0.20 0.14 0.08 0.02 0.00 9.53
Landsat VCF 5.19 0.95 0.79 0.66 0.69 0.44 0.19 0.25 0.19 0.25 0.14 0.08 0.02 0.00 9.85
MODIS VCF 5.93 0.89 0.81 0.68 0.70 0.59 0.19 0.29 0.20 0.28 0.14 0.08 0.04 0.01 10.83

≥30% GFW 4.97 0.81 0.79 0.63 0.57 0.38 0.19 0.20 0.19 0.20 0.14 0.08 0.02 0.00 9.17
Landsat VCF 4.07 0.72 0.73 0.54 0.53 0.19 0.18 0.09 0.14 0.18 0.14 0.08 0.01 0.00 7.60
MODIS VCF 4.31 0.69 0.75 0.54 0.55 0.24 0.17 0.11 0.15 0.20 0.14 0.08 0.01 0.00 7.94

≥45% GFW 4.68 0.78 0.77 0.59 0.54 0.31 0.19 0.17 0.18 0.18 0.14 0.08 0.02 0.00 8.64
Landsat VCF 3.67 0.60 0.71 0.46 0.45 0.10 0.17 0.04 0.12 0.15 0.13 0.08 0.01 0.00 6.69
MODIS VCF 3.79 0.58 0.72 0.46 0.46 0.12 0.15 0.04 0.13 0.16 0.13 0.08 0.01 0.00 6.82

≥60% GFW 4.26 0.74 0.76 0.52 0.49 0.17 0.19 0.09 0.16 0.17 0.14 0.08 0.01 0.00 7.78
Landsat VCF 3.31 0.50 0.66 0.40 0.38 0.06 0.14 0.02 0.10 0.13 0.13 0.07 0.00 0.00 5.91
MODIS VCF 3.29 0.50 0.67 0.38 0.38 0.07 0.12 0.01 0.10 0.13 0.12 0.07 0.00 0.00 5.83
MOD12Q1 3.65 0.67 0.75 0.51 0.44 0.31 0.19 0.15 0.15 0.21 0.14 0.08 0.01 0.00 7.25

Short names for countries: BRA (Brazil), COL (Colombia), PER (Peru), BOL (Bolivia), VEN (Venezuela), ARG (Argentina), GUY (Guyana), PRY (Paraguay), ECU (Ecuador), CHL (Chile),
SUR (Suriname), and URY (Uruguay).
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different components of forests. Optical remote sensing images (e.g.,
MODIS, Landsat) are mostly related to vegetation canopy (tree crown
canopy, leaves, and leaf area index), greenness, and phenology. L-band
microwave remote sensing images (e.g., PALSAR) penetrates through
the forest canopy (leaves) and interacts with tree branches and trunks.
Forests usually have leaf area index values of 4 m2/m2 and higher, thus
vegetation canopy (tree crown canopy) have much larger areas than
tree trunks and branches (projected areas). Forest products have close
forest estimation in the areas with relatively high leaf area index
(≥4 m2/m2). MODIS VCF and Landsat VCF have more forests with
relatively low leaf area index (< 4 m2/m2) than those of GFW,
PALSAR/MODIS, and JAXA in the areas (Fig. 11). This difference sug-
gests that when the VCF datasets are used to estimate total forest area
and compared with the FAO FRA total forest area estimates (10% tree
cover in its forest definition), one needs to consider leaf area index as an
adjusting factor and use much higher (e.g., 30% to 60% for GFW,
15%–30% for both MODIS VCF and Landsat VCF) threshold values in
the VCF datasets to estimate forest cover.

4.3. Improved forest cover maps from (1) the integration of microwave
(PALSAR) and optical images, and (2) the phenology concept

Microwave remote sensing is not affected by frequent clouds and
has substantial advantages for mapping tropical forests, especially in
the humid tropical area. The L-band JERS-1 HH polarization dataset in
late 1995 was used to generate forest cover maps in the Amazon Basin
based on a supervised classification approach and a hierarchical deci-
sion rule (Saatchi et al., 2000). In recent years, L-band ALOS PALSAR
HH and HV polarization datasets in 2007–2010 were used to produce
global forest maps based on specific region decision rules (Shimada
et al., 2014). As human settlements (e.g., buildings) and rocky lands
usually have similar HH or HV values as forests, there is a need to
identify them and reduce the commission error of forest cover maps
(Dong et al., 2012; Qin et al., 2015). We have evaluated the methods
that use PALSAR and optical images (e.g., Landsat, MODIS) to identify
buildings and rocky lands (Qin et al., 2017; Qin et al., 2016). We have
combined PALSAR and MODIS images to map forest cover in 2010 in
China (Qin et al., 2015) and monsoon Asia (Qin et al., 2016). The forest
area estimated for China in 2010 (2.02 × 106 km2) from the PALSAR/
MODIS approach is very close to the forest area estimate from the China
National Forestry Inventory (1.95 × 106 km2) and FAO FRA-2010
(2.07 × 106 km2) (Qin et al., 2015). The forest area estimated for
monsoon Asia (23 countries) in 2010 (6.32 × 106 km2) from the
PALSAR/MODIS approach is also close to the forest area estimate from
the FAO FRA-2010 (5.80 × 106 km2) (Qin et al., 2016). In this study,
the forest area estimated for South America in 2010 (8.63 × 106 km2)
from the PALSAR/MODIS approach is also very close to the forest area
estimate from the FAO FRA-2010 (8.64 × 106 km2). Many studies have
recognized the issue of large uncertainties in forest cover estimates and
called for the integration of optical and microwave remote sensing
images as a potential way to improve the accuracy of tropical forest
maps (Espirito-Santo et al., 2010; Reiche et al., 2015). Our previous
efforts for China (Qin et al., 2015), monsoon Asia (Qin et al., 2016), and
this study's efforts for South America have clearly demonstrated the
potential of integrating PALSAR and MODIS images to generate up-
dated and accurate forest cover maps at the country and continental
scales. These results also show that the FAO FRA-2010 dataset, which is
based on forest inventory from individual countries, is a reasonably
reliable dataset for the studies at country and continental scales.

Our study uses both PALSAR images (sensitive to structure- and
biomass of forests) and MODIS NDVI imagery (sensitive to canopy leaf
area index and phenology). ALOS satellite (PALSAR) was launched in
2006 and failed to work by April 2011. It provided global (excluding
Antarctica> 77.5° South latitude) and high resolution (50-m and 25-
m) L-band FBD mosaic datasets from 2007 to 2010 (Rosenqvist et al.,
2014). ALOS-2 satellite (PALSAR-2) was launched in May 2014,

Fig. 6. A comparison of forest cover areas at the continental (A) and country scales (B and
C) in 2010.
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equipped with enhanced L-band SAR sensors and plan to provide the
global observation up to the year 2021. PALSAR-2 global L-band FBD
mosaic datasets in 2015 and 2016 are freely available to the public. The
availability of both PALSAR and PALSAR-2 images opens a new op-
portunity to apply our mapping method to track and quantify spatial
patterns and temporal changes of forests in South America and other
parts of the world.

4.4. Forest cover dynamics in South America

Quantifying and mapping annual changes in forest cover (loss, gain, and
net change) is important for forest resource management but remains highly
debated with large uncertainty. For example, according to the FAO FRA
reports, the average annual net change of total forest cover in South
America was a loss of 40.0× 103 km2 year−1 in 1990–2000,
44.4× 103 km2 year−1 in 2000–2005, 33.0× 103 km2 year−1 in
2005–2010, and 20.2× 103 km2 year−1 in 2010–2015, respectively
(Keenan et al., 2015). The difference between the PALSAR/MODIS forest
maps in 2008 and 2009 also gave a relatively small annual net change in

total forest cover (a loss of 32.4× 103 km2 year−1) in South America. This
demonstrates the complementary values of PALSAR/MODIS forest maps to
the FAO FRA effort at continental scale. At the country scale, the net change
in forest area from the PALSAR/MODIS forest maps in 2008–2009 differ
from the FAO FRA 2010 dataset, with relatively large differences in Brazil
(11.5× 103 km2 year−1 versus 16.6× 103 km2 year−1), Argentina
(8.4× 103 km2 year−1 versus 3.2× 103 km2 year−1), and Bolivia
(1.5× 103 km2 year−1 versus 5.1× 103 km2 year−1) (Fig. 9A). Given the
large areas of forest cover and remoteness in Brazil and Argentina, the forest
inventory approach for the FAO FRA 2010 data product is likely to have
higher uncertainty than do the PALSAR/MODIS forest maps.

Several studies reported that the tropical forests of South America
had the largest loss in forest cover, driven by clear-cut logging, selective
logging, and the conversion of forests to pasture and croplands (De Sy
et al., 2015; Hansen et al., 2013). In Brazil, the GFW reported annual
forest losses in 2008 (80.7 × 103 km2) and 2009 (81.8 × 103 km2),
which was based on analyses of Landsat images (Fig. 9B). These losses
are much smaller than the total forest loss calculated from PALSAR/
MODIS maps in 2008 and 2009 (194.6 × 103 km2). The discrepancy

Fig. 7. The spatial distribution of multiple forest cover maps and their difference at the resolution of 1500 m.

Fig. 8. Forest frequency and dynamics of the PALSAR/MODIS forest maps in South America.
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Fig. 9. The area changes of the PALSAR/MODIS forest maps in South
America during 2008-2009.

Fig. 10. Forest edges. A) False color composition of PALSAR image, with R (HH), G (HV), and B (HH-HV). B) 50-m JAXA forest/non-forest map. C) 50-m PALSAR/MODIS forest/non-
forest map. D) False color composition of MODIS land surface reflectance, acquired on May 9, 2010, with R (SWIR2), G (NIR), and B (Red). E) 250-m MODIS maximum NDVI. F) 250-m
forest map from MODIS VCF (tree cover ≥10%). G) False color composition of 30-m Landsat TM image, acquired on May 15, 2010, with R (SWIR1), G (NIR), and B (Red). H) 30-m forest
map from Landsat VCF (tree cover ≥10%). I) 30-m forest map from GFW (tree cover ≥10%).
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between GFW and our PALSAR/MODIS maps can be attributed to
several reasons, including the mapping algorithms and image data used.
Forest fires from natural and anthropogenic sources are an indicator of
forest cover loss. The burned area was estimated to be about
200 × 103 km2 and 250 × 103 km2 in 2008 and 2009 in South
America, respectively (Randerson et al., 2012). Severe weather, such as
wind storms (Espirito-Santo et al., 2010) and drought (Phillips et al.,
2009), had also caused large losses or disturbance in forest cover.
Furthermore, the short-rotation industrial forest plantations such as
Eucalyptus plantations is another factor complicating the calculation
and mapping of forest cover (loss and gain) (le Maire et al., 2014). The
short-rotation Eucalyptus replaced natural forests and expanded
quickly in South America. For example, the Eucalyptus plantation area
in Brazil increased from 35 × 103 km2 in 2006 to about 50 × 103 km2

in 2010 (ABRAF, 2012).
According to the accuracy assessment from Global Land Cover

Validation Reference Dataset site maps, the PALSAR/MODIS forest
maps can capture dense forest very well and are not very sensitive to
the sparse forests, which may affect the identification of sparse forest
changes. Although it is difficult to use either high spatial resolution
images or ground reference data to assess the annual dynamics of forest
areas (loss, gain, and net change) from the PALSAR/MODIS forest maps
due to the limited data availability, the PALSAR/MODIS forest maps do
serve as complimentary datasets to both FAO FRA and GFW products at
the continental and country scales.

5. Conclusion

Accurate forest cover maps in South America are critical datasets for
biodiversity and conservation management, assessing changes in the
carbon and water cycle, and determining the effects of a changing cli-
mate. However, several global forest cover maps derived from analyses
of optical images have large uncertainties (Sexton et al., 2015). In this
study, we integrated optical (MODIS) and microwave (PALSAR) remote
sensing images and produced annual forest cover maps at 50-m spatial
resolution in 2007–2010 with high accuracy. The comparison by this
study of the total areas and spatial extents reported by multiple forest
cover map products has shown that: (1) there is little uncertainty in
forest cover in the areas of the Amazon Basin with dense forest cover:
(2) there is large uncertainty in forest cover in the semi-humid regions
with sparse forest cover and at the forest edges; (3) all forest maps tend
to underestimate forests in the areas with relatively low tree cover,
especially for the forest maps generated by coarse spatial resolution
images; optical-based VCF products are easy to overestimate forests in
the area with tree cover< 10%, especially for MODIS VCF and Landsat
VCF, and microwave/optical-based forest product has much improve-
ment; (4) PALSAR/MODIS forest maps in 2008/2009 report much

larger forest dynamics (gain, loss) than GFW did. The large dis-
crepancies in these forest cover products suggest that the researchers
and the decision makers should be cautious in choosing forest cover
map products. As Landsat and Sentinel-2 images are also available,
future studies of forest cover maps should also explore the integration
of microwave (PALSAR, PALSAR-2) and optical (MODIS, Landsat, and
Sentinel-2) images and track the spatio-temporal changes of forests
(Chen et al., 2016; Dong et al., 2013; Reiche et al., 2015).
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