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The uncertainty in tracking tropical forest extent and changes substantially affects our assessment of the con-
sequences of forest change on the global carbon cycle, biodiversity and ecosystem services. Recently
cloud-free imagery useful for tropical forest mapping from the Phased Array Type L-band Synthetic Aperture
Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) has become available. We used
PALSAR 50-m orthorectified mosaic imagery in 2009 and a decision tree method to conduct land cover clas-
sification and generate a 2009 forest map, which was evaluated using 2106 field photos from the Global
Geo-referenced Field Photo Library (http://www.eomf.ou.edu/photos). The resulting land cover classification
had a high overall accuracy of 93.3% and a Kappa Coefficient of 0.9. The PALSAR-based forest map was then
compared with three existing forest cover products at three scales (regional, national, and continental):
the Food and Agriculture Organization of the United Nations (FAO) Forest Resources Assessments (FRA)
2010, Global Land Cover Map with MERIS (GlobCover) 2009, and the MODIS Terra+Aqua Land Cover Type
product (MCD12Q1) 2009. The intercomparison results show that these four forest datasets differ. The
PALSAR-based forest area estimate is within the range (6.1–9.0×105 km2) of the other three products and
closest to the FAO FRA 2010 estimate. The spatial disagreements of the PALSAR-based forest, MCD12Q1 forest
and GlobCover forest are evident; however, the PALSAR-based forest map provides more details (50-m spatial
resolution) and high accuracy (the Producer's and the User's Accuracies were 88% and 95%, respectively) and
PALSAR can be used to evaluate MCD12Q1 2009 and GlobCover 2009 forest maps. Given the higher spatial
resolution, PALSAR-based forest products could further improve the modeling accuracy of carbon cycle in
tropical forests.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Large-scale deforestation in tropical regions has attracted much
attention in the past fewdecades due to its strong effects on atmospher-
ic greenhouse gases (Fearnside, 2000), biodiversity (Lawton et al., 1998;
Pimm & Raven, 2000), and regional climate (Salati & Nobre, 1991). For-
est management requires timely and accurate information on forests
(Hansen et al., 2008).

Southeast Asia has the third largest area of tropical rainforest in the
world, which is composed of tropical evergreen forest and deciduous
forest in seasonal drought areas. However, it has been experiencing a
more significant deforestation for conversion into agriculture (such as
oil palm plantations) than anywhere else (UNEP/GRID-Arendal, 2009).
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The humid tropical forest cover in Southeast Asia underwent the largest
changes with an annual net cover decrease rate of 0.71% from 1990 to
1997, higher than Latin America and Africa (Achard et al., 2002).
Much attention has been focused on those hotspots of deforestation,
including Borneo (Curran, 2004; Langner et al., 2007; Meijaard &
Sheil, 2007; Miettinen, 2007) and Sulawesi (Dechert et al., 2004). An
accurate forest map is essential for efforts in ‘reducing emissions from
deforestation and forest degradation’ (REDD).

Remote sensing has been used for forest inventory for decades
(Hansen et al., 2010a, 2010b, 2008) and is considered to be an effec-
tive tool for detecting forest extents and changes at regional and glob-
al scales. A number of studies have sought to map forests in Southeast
Asia using a remote sensing approach. For example, the National
Oceanic and Atmospheric Administration Advanced Very High Reso-
lution Radiometer (NOAA/AVHRR) data of 1990–1992 was used to
map forests through unsupervised classification of a vegetation
index (Normalized Difference Vegetation Index, NDVI) and Channel
3 radiance (Achard & Estreguil, 1995). However, its accuracy could
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Fig. 1. The workflow for mapping tropical forests based on PALSAR 50-m orthorectified
mosaic imagery. PALSAR 50-m mosaic was used as the imagery data source, and deci-
sion tree method was applied together with training and validation reference data
from the Global Geo-Referenced Field Photo Library and Google Earth. Three existing
global forest datasets (300-m Globcover in 2009, 500-m MCD12Q1 in 2009, and statis-
tical FAO FRA 2010 report) were used for comparison.
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be misleading in both its thematic legend and statistical data as there
was no accuracy assessment due to technical limitations (Achard et al.,
2001). Imagery from the SPOT-Vegetation sensor over the period of
1998–2000 was also used to map tropical forest cover in Insular South-
east Asia (Stibig &Malingreau, 2003; Stibig et al., 2004). Recently, imag-
ery from theModerate Resolution Imaging Spectroradiometer (MODIS)
has been widely used for forest cover mapping (Langner et al., 2007;
Tottrup et al., 2007; Xiao et al., 2009). However, estimates of tropical
forest area and deforestation rates based on optical remote sensing
are still uncertain due to frequent cloud coverage (Agrawal et al.,
2008; Chazdon, 2008; Grainger, 2008; Wurster et al., 2010).

A review of previous studies (Table 1) allows for estimating the
rates of deforestation in Southeast Asia during the past few decades.
According to Achard et al. (2002), an annual deforestation rate of
0.91% occurred in Southeast Asia during 1990–1997, determined by
utilizing a stratified systematic sampling scheme with 100 sample
sites covering 6.5% of the humid tropical domain. A decrease of defor-
estation in Southeast Asia was reported in the Food and Agriculture
Organization of the United Nations (FAO) Forest Resources Assess-
ments (FRA) 2010 (FAO, 2010); however, the deforestation was
not spatially homogeneous. Miettinen et al. (2011) found that from
2000 to 2010 deforestation continued with an annual rate of 1.0%
in Insular Southeast Asia, according to an investigation based on
MODIS data at 250-m spatial resolution. It remains unclear what has
happened to the forests in Mainland Southeast Asia (MSEA) in recent
years. Also, the forest trend reliability was uncertain due to inconsis-
tencies between study periods or different data sources (Fritz et al.,
2011; Grainger, 2010). Improved and dynamic forest cover monitor-
ing is needed in order to produce a more reliable trend analysis.

Given the limitation of optical remote sensing in tropical forest
mapping, cloud-free synthetic aperture radar (SAR) has the poten-
tial to be an important data source for forest mapping. Previous
studies showed that a longer radar wavelength (e.g. L-band SAR) is
more suitable to the delineation of forest than shorter wavelengths
because of its greater penetration through the tree canopy (Baghdadi
et al., 2009). The Phased Array Type L-band Synthetic Aperture Radar
(PALSAR) onboard the Advanced Land Observing Satellite (ALOS) was
launched by the Japan Aerospace Exploration Agency (JAXA) in January
of 2006 and provided polarimetric radar images for the global land
surface that have been used for forest mapping (Almeida et al., 2009;
Santoro et al., 2010; Xiao et al., 2010). Studies in Insular Southeast
Asia have shown the potential of PALSAR imagery for regional forest
monitoring (Longepe et al., 2011; Miettinen & Liew, 2011; Walker
et al., 2010). JAXA has generated the world's first global forest and
non-forest area distribution (in 2007 and 2009) with a 10-meter resolu-
tion, by using ALOS/PALSAR data. However, the 10-m forest/non-forest
map is still unavailable to the public, yet (JAXA-EORC, 2010). In addition,
theWoods Hole Research Center is developing a pan-tropical forest cover
map as baseline data for subsequent deforestation and forest degradation
monitoring by using a pan-tropical database of high-resolution ALOS/
PALSAR data (Kellndorfer, 2010). To support regional-scale studies,
JAXA released the PALSAR 50-m orthorectified mosaic imagery (fine
bean with dual polarization) in 2007, 2008 and 2009 for many parts of
the world and MSEA has good PALSAR 50-m data coverage.
Table 1
A summary about existing tropical forest maps in Southeast Asia (SEA).

References Regions Study period

(Achard & Estreguil, 1995) SEA 1990–1992
(Stibig et al., 2004) Mainland SEA 1998–2000
(Giri et al., 2003) Mainland SEA 1985/86, 1992
(Stibig & Malingreau, 2003) Insular SEA 1998–2000
(Miettinen et al., 2012) Insular SEA 2010
(Achard et al., 2001) Pan-tropical forest belt Early 1990s
The objective of this study is twofold: (1) to generate an accuratemap
of tropical forest inMSEA based on the ALOS/PALSAR 50-m orthorectified
mosaic products in 2009, and (2) to compare the PALSAR-based forest
map with FAO FRA 2010 and two forest maps generated from moderate
resolution imagery (MODIS and MERIS), which will help understand the
error and uncertainty of these three datasets (Fig. 1). The results from
this study will support forest inventory and management.

2. Data and methods

Southeast Asia geographically includes a mainland area and a
string of archipelagoes to the south and east. It is commonly divided
into two sub-regions: MSEA (or Indochina) and Insular Southeast
Asia (or Maritime Southeast Asia). MSEA includes five countries
(Cambodia, Laos, Myanmar, Thailand, Vietnam) and Peninsular
Malaysia; Insular Southeast Asia includes East Malaysia and five
countries (Brunei, Indonesia, Philippines, Singapore, and East
Timor). In this study, we focused on the main body of MSEA, that is,
Vietnam, Laos, Cambodia, Thailand and Myanmar. The elevation is
very high in the northern parts of the study area and low and smooth
Data sources Validation and Accuracy

AVHRR Existing vegetation maps and TM
SPOT4-vegetation TM and FAO FRA
AVHRR Field surveys in hotpots
SPOT4-vegetation Existing forest data and FAO data
MODIS, PALSAR 50 m mosaic TM and IKONOS
AVHRR TM
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in southern parts of Myanmar, Thailand, Cambodia, and eastern
Vietnam (Fig. 2).

MSEA belongs to the warm and humid tropics; however, climate is
variable inside the region due to the complex topography. Coastal
areas have a tropical humid climate. Most interior regions of MSEA
(particularly the Khorat Plateau in the northern Myanmar, Laos, and
northern Vietnam) are characterized as monsoon climate with dis-
tinct wet and dry seasons. The winter northeast monsoon occurs
roughly from November to March and brings relatively dry, cool air
and little precipitation, while the summer southwest monsoon
prevails from May to September and brings a large amount of precip-
itation during the wet season to the mainland.
2.1. PALSAR 50-m orthorectified mosaic imagery

The PALSAR 50-m orthorectified mosaic data, provided by JAXA, is
created globally with images in the ascending path. The original
PALSAR images have an off-nadir angle of 34.3° and cover dry and
wet seasons, or summer and winter seasons, and were resampled
into the 50-m by 50-m mosaic to create one composite per year.
The dates of image acquisition vary between years. It has been geo-
metrically rectified using a 90-m digital elevation model (DEM) and
geo-referenced into geographical latitude and longitude coordinates
(Longepe et al., 2011). The mosaic algorithm including calibration
and validation of PALSAR 50-m orthorectified mosaic product has
been reported in (Shimada & Ohtaki, 2010; Shimada et al., 2008).
These PALSAR 50-m mosaic data are freely available to the public at
A

C

Fig. 2. Color composite map of PALSAR polarizations (R, G, B=HH, HV, and Difference, resp
from GlobCover 2009 and topography from 90-m digital elevation data. The subsets (whi
good performances in identifying forest, cropland, water and buildings.
the ALOS Kyoto and Carbon Initiative official website (http://www.
eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm). For this study, we
downloaded the PALSAR 50-m orthorectified mosaic product with
the Fine Beam Dual polarization (FBD) observational mode from
July to Oct. 2009, which has two polarizations: HH and HV. HH
means microwave energy was both transmitted and received in the
horizontal direction by the radar antenna, while HV means micro-
wave energy transmitted in the horizontal direction and received
in the vertical direction. The Digital Number (DN) values (amplitude
values) were converted into normalized radar cross section in decibel
(dB) according to the formula from JAXA (Rosenqvist et al., 2007) and
the parameters from the metadata of each file:

σ0 dBð Þ ¼ 10� log10DN
2 þ CF ð1Þ

where σ 0 is the backscattering coefficient, DN is the digital number
value of pixels in HH or HV; and CF is the absolute calibration factor
of −83.

We produced two additional images: (1) the ratio image of HH
and HV (Ratio=HH/HV) and (2) the difference image between HH
and HV (Difference=HH−HV). These two composited images
proved valuable for land cover classification (Miettinen & Liew,
2011; Wu et al., 2011). Visual image evaluation shows that the differ-
ence image is less affected by shadows due to complex topography
than does the ratio image. The difference image (HH-HV) was also
used in previous studies for land cover mapping (Longepe et al.,
2011; Walker et al., 2010). A color composite map from HH, HV and
B

D

ectively). Image Data© JAXA, METI. Two small maps show the land cover distribution
te boxes A, B, C and D) for four land covers (shown in Fig. 4) show that PALSAR has

http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm
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Difference images showed a visual separability of land-cover types in
the region (Fig. 2).

2.2. Extraction of regions of interest (ROIs) from the Global
Geo-Referenced Field Photo Library and Google Earth

Ground truth samples, which are used as training data for super-
vised classification or validation data for accuracy assessment, are
important for land cover classification. We used the geo-referenced
field photos in the Global Geo-Referenced Field Photo Library at the
University of Oklahoma (http://www.eomf.ou.edu/photos/), a citizen
science data portal for archive, sharing and exchange of geo-tagged
field photos and associated thematic databases of land cover types
from the individual photos (Xiao et al., 2011). The geo-tagged field
photos in the Field Photo Library come from researchers and citizens
with GPS cameras and smartphones, and many of the field photos
were also described with detailed information on land cover types,
e.g., forests, rubber plantation, paddy rice, winter wheat, sugarcane,
and so on. Field photos have been a part of field surveys for decades,
and this citizen-based Field Photo Library provides a web-based
venue for researchers and citizens to share their ground reference
data and make it available to the public. The geo-referenced field
photos can be easily uploaded to the website and downloaded into
different formats, e.g., Keyhole Markup Language files (.kml or .kmz),
ArcGIS vector files (shapefile), and dbf format files. In this study, a
total of 2106 geo-referenced field photos from Thailand, Vietnam, and
Myanmar were used (Fig. 3B); of which, 2052 were from our field
trips in Thailand and Vietnam, 54 in Myanmar, Cambodia and Laos
were from the Degree Confluence Project (http://confluence.org/).

We also used Google Earth to locate and digitize ROIs, as it has very
high spatial resolution imagery, particularly in the regions around cities.
A previous study showed that Google Earth's High-Resolution Imagery
Fig. 3. Spatial distributions of A) ROIs used for training analysis from Google Earth,
Archive has high horizontal positional accuracy (Potere, 2008). Several
studies have used Google Earth to collect validation information
for land cover classification (Benedek & Sziranyi, 2009; Cohen et al.,
2010; Gemmell et al., 2009; Montesano et al., 2009). In this study, a
series of random sampling points were generated with Google Earth
high-resolution images as reference and interpreted into ROIs for signa-
ture analysis and decision tree rule training. The samples were selected
inside large patcheswith intact land cover; thus, all ROIswere extracted
for locationswhere only a single land cover type covered the area. Final-
ly, 1.4×107 PALSAR pixels were acquired from the ROIs defined by
Google Earth, including 997 986 forest pixels (25 ROIs), 160 916 crop-
land pixels (32 ROIs), 303 948 water pixels (10 ROIs), and 26 970
built-up land pixels (11 ROIs), which covered ~2% of all pixels in the
study area (there are 807.6 million pixels covering the study area). All
pixels were used for determining the rules of decision tree (Fig. 3A).

In addition, all field-photo-located points were used as references
to digitalize ROIs in Google Earth and land cover classification valida-
tion was done with these ROIs. Four land cover types of ROIs were
digitalized and acquired according to the field-photos in Google
Earth (Fig. 3B). As our field photos were mainly for forest and crop-
land, water and built-up land were acquired directly in Google
Earth. Built-up land is quite easy to identify due to higher spatial
resolution imagery in urban areas, as is water body due to its color.
2.3. Analysis of PALSAR backscatter signatures for land cover types

The radar backscatter is affected by many complex factors,
including frequency, polarization, surface roughness, geometric
shape (e.g. inclination of land surface) and dielectric properties of
the target, and so on. L-band PALSAR has a more powerful canopy
penetrating ability than C and X-bands (Baghdadi et al., 2009),
and B) field photo locations for validation (http://www.eomf.ou.edu/photos/).

http://www.eomf.ou.edu/photos/
http://confluence.org/
image of Fig.�3
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therefore, the size and form of trunks, branches and leaves affects
the backscatter of L-band.

We calculated the frequency distributions of the two polarizations
(HH and HV), the Ratio image and the Difference image for four
land-cover types. The histogram of the HH image (Fig. 4A) shows
that water has much lower backscatter values than forests and partly
overlapped with cropland; as inland water bodies tend to be rela-
tively calm and smooth, reflecting most of the backscatter in direc-
tions other than the sensor. This means water is separable from
forests, urban areas and most cropland. Both forests and urban areas
have high HH backscatter values, and some urban areas (most likely
large building complex) have even higher backscatter values than for-
ests due to the complex reflectance environments caused by building
orientations and corner reflectors. There is some degree of overlap in
HH backscatter among forests, buildings and cropland. The histogram
of the HV image (Fig. 4B) shows that forests have higher HV values
than water and cropland due to depolarization caused by complex
structure (tree trunks and leaf canopy) and a large amount of bio-
mass. The HV histogram of forests only slightly overlaps with that of
cropland and has relatively more overlaps with built-up land as
Fig. 4. The backscatter signatures of different land covers in four images. A) HHpolarization, B)HV
figurewere extracted fromPALSAR 2009 data. Four subsets from the color compositionmap (corre
(mixed with some residential land), G) water and H) buildings.
large patches of forests distributed in urban areas. Therefore, HV is a
good indicator for separating forests from water and cropland, but
not sufficient for complete separation of forests and built-up land.
The histogram of the Ratio image (Fig. 4C) shows that all three land
cover types have an overlapping range with forests for this indicator.
The histogram of the Difference image (Fig. 4D) shows that forest has
very low values, while cropland has relative high values.

2.4. PALSAR threshold values and decision tree method for mapping
forests

The above exploratory data analysis (Section 2.3) provides useful
information for constructing a decision tree algorithm based on the
threshold values from the HH, HV, HH/HV and HH–HV images. First,
water can be delineated easily as it has very low HH and HV values.
Secondly, forests tend to have higher HH and HV values, and lower
Difference values, although build-up lands partly overlapped with
forest. Cropland can also be distinguished and mapped.

Here we used the 95% confidence interval of the previously
discussed histograms of individual images (HH, HV, HH/HV, and
polarization, C) Ratio image (HH/HV), andD)Difference image (HH–HV). The samples in this
spondingwith A, B, C andD in Fig. 2) showed four land covers including E) forest, F) cropland

image of Fig.�4
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HH–HV) to define threshold values for decision tree rules (Fig. 4). We
assume that the ROIs of individual land cover types have some uncer-
tainty and we exclude 2.5% pixels with lowest and highest backscatter
values, respectively. The threshold values were further rounded to in-
teger number for HH and HV, and to 0.5 decimal unit for ratio and dif-
ference images. We selected the following threshold values for the
decision tree rules:

If HHb−16 and HVb−24 then a pixel is classified as water;
Else if 3.5bDifferenceb6.5 and −15bHVb−7 and 0.3bRatiob0.7
then a pixel is classified as forest;
Else if HVb−16 then a pixel is classified as cropland;
Else a pixel is labeled as other land cover or un-classified.

These threshold values for the decision tree algorithm are based
on the PALSAR images in 2009. As with all supervised classification
approaches, these threshold values are unique for PALSAR images in
2009 and MSEA, and might not apply to PALSAR images acquired in
other regions or periods without careful examination of PALSAR imag-
ery used. The decision tree was built and executed in ENVI 4.8 software
and the resulting 50-m land cover map is shown in Fig. 5. The forest
class was extracted to generate a forest map at 50-m resolution in
2009. We aggregated the 50-m forest map and calculated forest per-
centagewithin 300-mpixels and500-mpixels (Fig. 8), and the resulting
fractional forestmaps at 300-m and 500-m resolutions are used to com-
pare with forest maps from the GlobCover 2009 dataset (300-m resolu-
tion) and the MCD12Q1 2009 dataset (500-m resolution).

2.5. Validation of PALSAR-based forest map in 2009

The accuracy of the PALSAR-based forest map was assessed by
using samples interpreted from 2106 field photos in MSEA (see
Fig. 5. The land-cover classification result based on the decision tree method and
PALSAR 50-m orthorectified mosaic imagery in 2009.
Section 2.2 for detailed sample acquirement approach). 98 320 pixels
were used for the validation of land cover classification, including
28 054 forest pixels, 8,965 cropland pixels, 50 617 water pixels, and
10 684 built-up land pixels (Table 2). The accuracy assessment
was performed by using the “Ground Truth ROIs” method in ENVI
software. In addition, we displayed the resulting maps of individual
land cover types in the image windows of the ENVI software, which
is linked with Google Earth, and carried out visual evaluation of the
maps.

2.6. Comparison with existing land cover products

Several regional and global forest maps have been generated from
optical sensors, including a MODIS-based global land cover map (Friedl
et al., 2010) and a MERIS-based global land cover map (Bontemps
et al., 2011). Limited effort has been devoted to evaluation of these forest
maps due to lack of resources (Kaptue Tchuente et al., 2011). We
compared the PALSAR-based forest map with the following three forest
data products that are widely used:

FAO FRA 2010 forest area data. FAO has monitored and reported the
world's forests at 5–10 year intervals since 1946. The FAO FRA 2010 is
the most comprehensive forest assessment to date. Forest area esti-
mates were collected from cooperating member countries; FRA
2010 covered 233 countries, which increased from 212 in FRA 2000.
The original data, data reliability indications, and terminology defini-
tions from all the member countries were collected, a series of pro-
cesses were conducted (e.g., reclassification of national data into the
FRA classification system), and internal consistency checks were
performed (FAO, 2010). The national statistical table was used in
this study. FAO has initiated a new satellite-based survey, and initial
results were released in 2011, reporting forest change from 1990 to
2005 (FAO et al., 2009). However, this new high resolution remote
sensing survey is currently unavailable to the public.

The GlobCover 2009 land cover product was generated by the
GlobCover project under the support of the European Space Agency.
GlobCover 2009 is a 300-m global land cover product based on
MERIS FR time series data from Jan to Dec 2009 collected onboard
the ENVISAT satellite (Bontemps et al., 2011), available at its official
website (http://ionia1.esrin.esa.int/index.asp). It is composed of 22
different land cover types, including seven forest dominated types
(Table 3). In this study, we combined them into one forest layer and
compared the resultant forest map with the PALSAR-based forest
map.

The MODIS MCD12Q1 land cover product was generated by the
MODIS Land Science Team, using MODIS 500-m surface reflectance
data from Terra and Aqua platforms (Friedl et al., 2010). The
MCD12Q1 (theMODIS Terra+Aqua Land Cover Type Yearly L3 Global
500 m SIN Grid product) data product has several land cover
Table 2
Confusion matrix between PALSAR-based land cover classification and ground truth
samples from field photos. The land cover of “others” means urban land and other
land covers.

Ground truth samples (pixels) Total
classified
pixels

User
Acc. (%)

Class Water Others Forest Cropland

Classification Water 49735 0 0 563 50298 99%
Others 9 9327 2784 396 12516 75%
Forest 16 1328 24746 54 26144 95%
Cropland 857 29 524 7952 9362 85%

Total ground
truth pixels

50617 10684 28054 8965 98320

Prod. Acc. (%) 98% 87% 88% 89%

http://ionia1.esrin.esa.int/index.asp
image of Fig.�5


Table 3
The land-cover types of MCD12Q1 and GlobCover that was combined into the forest
domain in this study.

Forest category from GlobCover Forest category from
MCD12Q1

Closed to open (>15%) broadleaved
evergreen or semi-deciduous forest (>5 m)

Evergreen needleleaf forest
Evergreen broadleaf forest

Closed (>40%) broadleaved deciduous
forest (>5 m)

Deciduous needleleaf forest

Open (15–40%) broadleaved deciduous
forest/woodland (>5 m)

Deciduous broadleaf forest

Closed (>40%) needleleaved evergreen
forest (>5 m)

Mixed forest

Open (15–40%) needleleaved deciduous
or evergreen forest (>5 m)

Closed to open (>15%) mixed broadleaved
and needleleaved forest (>5 m)

Mosaic forest or shrubland (50–70%) / grassland
(20–50%)

Closed to open (>15%) broadleaved forest regularly
flooded (semi-permanently or temporarily) —
Fresh or brackish water

Fig. 6. A comparison of forest area estimates (unit: km2) in Mainland Southeast Asia
among four datasets: PALSAR 2009, MCD12Q1 2009, GlobCover 2009 and FAO FRA
2010.
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classification schemes, and we used the primary land cover scheme
from the International Geosphere Biosphere Programme (IGBP),
which includes 17 land cover classes. Five forest types (Evergreen
Needleleaf forest, Evergreen Broadleaf forest, Deciduous Needleleaf
forest, Deciduous Broadleaf forest, and Mixed forest) were combined
into one forest layer for comparison with the PALSAR-based forest
map.

3. Results

3.1. Forest map of Mainland Southeast Asia from 2009 PALSAR 50-m
orthorectified mosaic imagery

The PALSAR-based algorithmestimates a forest area of 8.7×105 km2

in MSEA (five countries), which covered 46% of the land area in the re-
gion. Fig. 5 shows the spatial distribution of this forest estimate in
MSEA. Ground reference points, derived from digitalization in Google
Earth referring to the Global Geo-Referenced Field Photo Library,
were adopted to evaluate the accuracy of the land cover classifica-
tion. 98 320 pixels from 532 ROIs were used to assess the accuracy
of the PALSAR land cover map at 50-m resolution. The results
showed that the land cover classification had an overall accuracy of
93.3% and a Kappa Coefficient of 0.9. The Producer's Accuracy and
the User's Accuracy of forest were 88% and 95%, respectively
(Table 2). Water has the highest accuracy in both the Producer's
Accuracy and the User's Accuracy because of its extremely low HH
and HV values. The User's and Producer's Accuracy of cropland
were also high (85 % and 89 %, respectively). In general, the decision
tree based classification had a reasonably high accuracy for mapping
forest in the region.

3.2. Area comparison between PALSAR-based forest map and other three
forest cover products

At the continental scale, forest proportion is high in MSEA
according to FRA 2010, accounting for over 48% of land area in the
five countries (FAO, 2010). Among the three existing land cover
datasets (FRA 2010, GlobCover 2009, and MCD12Q1 2009), forest
area estimates in MSEA range from 6.1×105 km2 (GlobCover 2009)
to 9.0×105 km2 (FRA 2010), which suggests a large uncertainty in
estimating forest area in the region. Our PALSAR-based forest area
estimate (8.7×105 km2) was within the range of the other three for-
est datasets, but most consistent with the estimate of FRA 2010.

At the country scale, Myanmar has the largest amount of forest
area among five countries (Fig. 6), and the forest area estimate in
Myanmar from GlobCover 2009 is substantially lower than those
from PALSAR 2009, FRA 2010 and MCD12Q1-2009. In Thailand, forest
area estimates from MCD12Q1-2009 and GlobCover 2009 were
substantially lower than those from FRA 2010 and PALSAR 2009. In
Vietnam, forest area estimates from the four datasets have relatively
small differences between them. Forest area estimate from the FRA
2010 is slightly larger than that from PALSAR 2009 in Cambodia,
Laos, Thailand and Vietnam, while forest estimate in Myanmar from
PALSAR 2009 is higher than that from FRA 2010.

At the pixel level, Fig. 7 shows the spatial distribution of forest
from three datasets (PALSAR 2009, GlobCover 2009 and MCD12Q1
2009). Visually it seems that all the three products have some degree
of spatial consistency for most of the study area. However, there is a
relatively large difference between these maps, e. g., in the middle-
eastern region of Myanmar (the blue circle in Fig. 7), where PALSAR
2009 showed more forest area, but both MCD12Q1 2009 and
GlobCover 2009 show a small area of forest. Comparison with Google
Earth images in multiple locations in Myanmar shows that a large
area of forest was indeed present. This indicates that PALSAR imagery
has a stronger and improved capacity to map forest, which may be
partially attributed to the higher spatial resolution of PALSAR and
the nature of radar data. Subset comparisons using Google Earth
as reference data clearly illustrate the potential of PALSAR 50-m
orthorectified mosaic imagery in improving forest mapping when
compared with moderate resolution imagery (MERIS and MODIS).

3.3. Spatial intercomparison of forest cover maps: PALSAR, MERIS, and
MODIS

In order to compare the three datasets at the same spatial resolu-
tion, these three forest cover maps were first aggregated into forest
percentage maps with a 1500-m resolution (the least common multi-
ple of the three spatial resolutions — 50-m, 300-m, 500-m), and then
the piecewise disagreement analysis between them was conducted
by using the difference of two forest percentage maps. Fig. 8 C, D
and E show the disagreements among the three forest maps.

1) MCD12Q1 and GlobCover. A disagreement between MCD12Q1 and
GlobCover was evident (Fig. 8C) as MCD12Q1 has a higher forest
area estimate. The 1500 m pixels covered with a significantly small-
er percentage of GlobCover-estimated forest than MCD12Q1-
estimated forest covered 17% of all the pixels in the study area. 4%
of pixels in the study area had over 50% more forest coverage in
GlobCover than in MCD12Q1. The remaining 79% of pixels have
close forest percentages between GlobCover and MCD12Q1 derived
forests. We find that the disagreement between these two datasets
is large. Fritz et al. (2011) examined global cropland and forest
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Fig. 7. The spatial distribution of forest from the three datasets in the Mainland Southeast Asia: (A) PALSAR 2009, (B) GlobCover 2009, and (C) MCD12Q1 2009.
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Fig. 8. Forest area percentage maps aggregated from PALSAR 50-m forest map at a resolution of A) 500-m, and B) 300-m; and the disagreement among aggregated 1500-m forest
percentage maps of different datasets by pairwise comparison: C) GlobCover and MCD12Q1, D) PALSAR and MCD12Q1, E) PALSAR and GlobCover. The percentage numbers in the
legends represent the difference values.
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Fig. 8 (continued).

Fig. 9. Frequency histograms of forest area percentages within (A) GlobCover 2009 forest
pixels, and (B) MCD12Q1 2009 forest pixels, when these GlobCover and MOCD12Q1
per-pixel forest maps were overlaid with the fractional forest maps aggregated from
PALSAR 2009 forest map (50-m resolution).
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disagreement between GlobCover, MCD12Q1, and the Global Land
Cover database for the year 2000 (GLC-2000), showing significant
uncertainty in these regional/global land cover datasets. Therefore,
the application of PALSAR in this study aimed to generate a higher
accuracy of forest cover map.

2) PALSAR and MCD12Q1. The differences between PALSAR and
MCD12Q1 are relatively small compared to the differences be-
tween GlobCover and MCD12Q1. Approximately 4% of pixels
have a higher forest cover fraction (over 50%) in MCD12Q1 than
in the PALSAR derived map, mainly concentrated in the northern
hilly regions; while 7% of pixels have a higher forest cover fraction
(over 50%) in PALSAR than MCD12Q1, distributed in the southern
and northern parts of Thailand, and central-eastern parts of
Myanmar.

3) PALSAR and GlobCover. Approximately 11% of pixels in the region
had a PALSAR forest estimate higher than GlobCover by over
50%, dispersed across the study area (Fig. 8E); the pixels where
GlobCover had higher forest fractions (over 50%) covered only
2% and were concentrated in the northern hilly regions. More val-
idation is still needed in these areas. Although we have collected
numerous field photos, it is impossible to sample such a large
study area completely from the field. The above disagreements
could arise from scale issues and variable forest definitions across
the different datasets, which is discussed in Section 4.2.

3.4. Assessment of GlobCover and MCD12Q1 forest pixels based on 50-m
PALSAR forest cover

We overlaid the fractional forest maps (Fig. 8A, B) from the
PALSAR-2009 forest map and the GlobCover 2009 and MCD12Q1
2009 maps, and calculated the percentage of PALSAR forest cover
within each GlobCover and MCD12Q1 pixel. The histogram shows
that 46% of GlobCover 2009 forest pixels have fractional forest
cover>80%, while 43% of MCD12Q1 2009 forest pixels have fractional
forest cover>80% (Fig. 9). In the FAO FRA 2010 report, 10% tree can-
opy cover is one criterion for the definition of a forest. Ninety-five
percent of forest pixels in the GlobCover 2009 forest map and 98%
of forest pixels in the MCD12Q1 2009 forest map have a fractional
forest cover >10%. The comparison results suggest that the forest
pixels from GlobCover 2009 and MCD12Q1 2009 have high forest
fractions.

To further evaluate the performance of the GlobCover 2009 and
MCD12Q1 2009 forest maps and the reliability of the thresholds
in the decision tree algorithm, we overlaid the forest maps with
PALSAR HH, HV, HH/HV and HH–HV images. We first calculated aver-
ages of HH, HV, HH/HV and HH–HV within 300-m pixels and 500-m
pixels, and then calculated frequency distributions of HH, HV,
HH/HV and HH–HV values for those forest pixels in the GlobCover
2009 and MCD12Q1 2009 datasets (Fig. 10). Fig. 10A shows that for
the MCD12Q1 forest map, 95.2% forest pixels were within the HH
range (−11 to - 2 dB), 93.2% of forest pixels within the HV range
(−15 to −7 dB), 92.1% forest pixels within the HH/HV ratio range
(0.3 to 0.7), and 95.6% of forest pixels within HH-HV difference
range (4 to 7 dB). These statistics are consistent with those thresh-
olds we used in the decision tree for forest mapping with PALSAR
(see Section 2.5). The same situation happens in the forest pixels of
the GlobCover 2009 forest map (Fig. 10B) with 92.7% pixels in the
HH range (−11 to −2 dB), 87.5% of pixels in the HV range (−15 to
−7 dB), 90.5% pixels in the HH/HV range (0.3 to 0.7), and 88.9% of
pixels in the HH–HV difference range (4 to 7 dB). This comparison
provides additional evidence explaining that the GlobCover 2009
and MCD12Q1 2009 forest pixels have high forest fractions.
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4. Discussion

4.1. Forest mapping based on PALSAR L-band imagery

The large uncertainty of the forest extent and distribution from
recently-published land cover datasets (Fritz et al., 2011) prompted
us to pursue a finer resolution forest cover map with higher accuracy,
especially in tropical regions (Grainger, 2008). This uncertainty was
partly from the frequent cloud cover, which affects forest mapping
of humid tropical regions based on optical remote sensing (Asner,
2001; Fritz et al., 2011). The L-band PALSAR sensor provides
cloud-free images and its backscatter values are sensitive to vegeta-
tion aboveground biomass and structure. The results from several
previous studies at the local scale have shown that PALSAR imagery
separates forests from other land cover types (Hoekman et al.,
2010; Lonnqvist et al., 2010; Lucas et al., 2010, 2007). However, a re-
gional scale forest map based on cloud-free PALSAR imagery was still
unavailable to the public prior to this study.

Before PALSAR became available, single HH polarization data
from the Japanese Earth Resources Satellite (JERS-1) was widely
used for forest mapping (e.g. clear-cut or biomass intensity) in the
1990s (Almeida et al., 2007, 2005; Luckman et al., 1998; Simard
et al., 2002); dual polarization (HH, HV) PALSAR images provide im-
proved accuracy in identifying and characterizing forests and defores-
tation (Almeida et al., 2009; Santoro et al., 2010). In this study, we
also evaluated the HH/HV Ratio image and HH–HV Difference
HH

Ratio

a

c

A)

Fig. 10. The polarization signatures within forest pixels of (A) MCD12Q1 2009 forest map an
scatter maps of HH, HV, HH/VH, and HH–HV.
image; the HH–HV Difference image proved valuable in identifying
and delineating forest, consistent with another study that used
PALSAR images to identify woody plantation species (Miettinen &
Liew, 2011). A number of algorithms have been developed for map-
ping forests from L-band SAR images (Santoro et al., 2010; Thiel
et al., 2009; Xiao et al., 2010). For example, the support vector ma-
chines (SVM) algorithm was used to evaluate the potential of
PALSAR orthorectified FBD data at 50-m spatial resolution for identi-
fying forests at a site in Riau Province, Sumatra island, Indonesia
(Longepe et al., 2011), and the agreement between the ground refer-
ence data and the PALSAR-based natural forest map was 86%. Howev-
er, a reliable and operational method is necessary for a rapid regional
forest mapping. In this study, we developed a simple decision tree
algorithm that uses threshold values from HH, HV, HH/HV Ratio and
HH–HH Difference images, as a consistent method to map forest,
and it performs reasonably well in the area we sampled.

The forest area estimates by country from the PALSAR-based for-
est map and the FRA 2010 forest estimates have the smallest differ-
ences (Fig. 6), this consistency showes the potential of this method
for large scale forest inventories. At present, a wall-to-wall forest
cover map from the FRA-2010 remote sensing survey is not available
to the public. It would be of interest to carry out a spatial comparison
between these datasets when the FRA-2010 releases its maps in the
near future. If it is in agreement with PALSAR estimates, then this
simple and reproducible forest mapping method based PALSAR
could positively contribute to forest inventory and management.
HV

Difference

b
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d (B) GlobCover 2009 forest map, when these two forest maps were overlaid with back-
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Fig. 10 (continued).
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4.2. Uncertainty issue

We recognize that the PALSAR forest map generated in this study
also has some error and uncertainty, and it could be improved in the
future. The first source of uncertainty results from these data being a
temporal composite from PALSAR images acquired over the period of
July to October in 2009. The backscatter from crops could change in
the period that brought some disturbances. Standing crop biomass
could increase the radar backscatter coefficient, but post-harvested
crop fields (no biomass, or flooded field) could decrease the radar
backscatter coefficient. Thus, those pixels with a radar backscatter
coefficient at the border of the decision tree threshold values could
be misclassified at different periods.

The second source of uncertainty is the definition of forest and its
characteristic signature in remote sensing images. According to the
definition from FAO, forest refers to a land parcel (0.5 ha or larger)
with a tree canopy cover of more than 10% and tree height of 5 m
and up (FAO, 2001). Forests are defined by the presence of trees
and the absence of other predominant land uses (FAO, 2001). Open
and closed forests were further defined by tree canopy cover
(Achard et al., 2002). Our study used the FAO definition, which
could be one reason that our result is close to FAO, 2010. It might
be more reasonable to take advantage of the higher resolution
PALSAR and produce the forest map at the resolution with the
smallest forest unit according to the FAO definition. However, these
two factors (% tree canopy cover and tree height) are difficult to accu-
rately measure by moderate resolution optical and SAR remote sens-
ing. Although a pixel of the PALSAR 50-m orthorectified mosaic
imagery is smaller than the minimum unit area (0.5 ha or
~70 m×70 m) for the FAO forest definition, it's still difficult to ac-
quire tree canopy cover, as the radar backscatter coefficient is an inte-
grated indicator affected by a series of complex factors. The pixel sizes
in the GlobCover 2009 and MCD12Q1 2009 datasets are much larger
than the minimum unit area for forest as defined by FAO, and accord-
ingly, the issue of mixing pixels might be more severe. MCD12Q1 and
GlobCover applied different forest definitions (Bontemps et al., 2011;
Strahler et al., 1999), e.g., 15% was used as bottom limit of the tree
canopy cover in GlobCover while MCD12Q1 used 60%; in addition,
GlobCover used the same tree height threshold (5 m) as FAO while
2 m is used in MCD12Q1. The area disagreements among the three
datasets are partly from the sub-forest categories in different land
cover classification schemes (Table 3) (Bontemps et al., 2011; FAO,
2001; Friedl et al., 2010). For example, in the FAO FRA 2010 Report,
forest areas exclude those with agricultural purposes or urban devel-
opment. It is currently almost impossible to distinguish forest use
type (forestry use or agricultural use) by remote sensing. In the
GlobCover 2009 classification system, some classes are a mixed type
with two or more vegetation types, e.g. the type of “mosaic vegetation
(grassland/shrubland/forest) (50–70%) / cropland (20–50%).” Mini-
mum forest patch depends on the pixel size to a large extent.

The third source of uncertainty comes from complexity of land-
scapes in MSEA, driven by complex topography and intensive agricul-
tural practice (e.g., terrace crop fields, mixed cropping). Although
several studies have also evaluated the potential of PALSAR 50-m
orthorectified mosaic data in identifying different forest types
(Miettinen & Liew, 2011; Thiel et al., 2009; Xiao et al., 2010), more
complicated forest type classification methods are less robust than a
simple forest/non-forest classification (Walker et al., 2010), as the
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overall accuracy decreased when more and varied forest types were
considered. The diverse and complex landscapes suggest that future
study is needed to gather more ground reference data (e.g., geo-
referenced field photos) and improve characterization of signatures
for individual forest types.

4.3. Implication and future work

The results of this study have demonstrated the potential of
PALSAR 50-m orthorectified mosaic imagery for regional-scale map-
ping of forest. As JAXA has already released PALSAR 50-m mosaic
imagery for Southeast Asia and tropical Africa to the public and is
planning to release PALSAR 50-m mosaic imagery for South America,
it is possible to develop PALSAR-based tropical forest maps across the
pan-tropical zone using the approach described in this study. Work is
ongoing to map the pan-tropical forest cover based on ALOS image
mosaic data by WHRC/ the Alaska Satellite Facility (Kellndorfer,
2010). The JERS-1 SAR images (HH) over the Amazon, Central
America, equatorial Africa and Southeast Asia were mosaicked with
some 13 000 SAR scenes for large scale of applications (Rosenqvist
et al., 2000; Shimada et al., 2000) and are freely available. Although
JERS-1 single polarization imagery has some shortcomings in forest
delineation (Santoro et al., 2010), it is a valuable data source for forest
change analysis. A study on forest change in Southeast Asia between
1990s (JERS-1 imagery available in 1996) and 2009 (PALSAR) could
provide invaluable information on deforestation in the region. As
MSEA has undergone huge forest changes in recent past, deforesta-
tion and afforestation were concurrent (FAO, 2010). In addition, in-
cluding texture information in classification in the future could
improve estimates, as the texture can help in separation between
natural forest and plantation which have different shapes.

5. Conclusion

There is large variability across tropical forest area estimates for
2009–2010 from multispectral optical remote sensing and the FAO
FRA forest estimates in Mainland Southeast Asia. The forest map pro-
duced from 2009 PALSAR 50-m orthorectified mosaic imagery in this
study indicates better accuracy in forest estimates due to both the
higher spatial resolution and cloud-free observation of the PALSAR
imagery. The use of PALSAR to estimate forest allows for the evalua-
tion of forest area estimates derived from multispectral data and
other statistical methods, something which until now has proven
challenging. If the accuracy of forest cover estimates using PALSAR
radar imagery is consistent across other tropical regions, then esti-
mates of tropical forest area across the globe can be obtained with
greater accuracy using these data. The PALSAR-based forest cover
map could provide a reference for forest inventory and also perform
as a background map to support ecological modeling.
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