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Mapping Forest and Their Spatial–Temporal Changes
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Integrating ALOS/ALOS-2 L-Band SAR
and Landsat Optical Images
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Abstract—Accurately monitoring forest dynamics in the tropical
regions is essential for ecological studies and forest management.
In this study, images from phase-array L-band synthetic aperture
radar (PALSAR), PALSAR-2, and Landsat in 2006–2010 and 2015
were combined to identify tropical forest dynamics on Hainan Is-
land, China. Annual forest maps were first mapped from PALSAR
and PALSAR-2 images using structural metrics. Those pixels with
a high biomass of sugarcane or banana, which are widely dis-
tributed in the tropics and subtropics and have similar structural
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metrics as forests, were excluded from the SAR-based forest maps
by using phenological metrics from time series Landsat imagery.
The optical–SAR-based forest maps in 2010 and 2015 had high
overall accuracies (OA) of 92–97% when validated with ground
reference data. The resultant forest map in 2010 shows good spatial
agreement with public optical-based forest maps (OA = 88–90%),
and the annual forest maps (2007–2010) were spatiotemporally
consistent and more accurate than the PALSAR-based forest map
from the Japan Aerospace Exploration Agency (OA = 82% in
2010). The areas of forest gain, loss, and net change on Hainan Is-
land from 2007 to 2015 were 415 000 ha (+2.17% yr–1), 179 000 ha
(–0.94% yr–1), and 236 000 ha (+1.23% yr–1), respectively. About
95% of forest gain and loss occurred in those areas with an elevation
less than 400 m, where deciduous rubber, eucalyptus plantations,
and urbanization expanded rapidly. This study demonstrates the
potential of PALSAR/PALSAR-2/Landsat image fusion for moni-
toring annual forest dynamics in the tropical regions.

Index Terms—Forest loss and gain, high biomass crops, image
data fusion, land surface water index (LSWI), normalized differ-
ence vegetation index (NDVI).

I. INTRODUCTION

TROPICAL forests exert a profound influence on climate,
biodiversity, and ecosystem services [1]. Rapid deforesta-

tion and degradation of tropical forests, which lost approxi-
mately 13 million ha per year in the period 2000–2010 and
constituted about 15% of the world’s anthropogenic greenhouse
gas emissions, has been underway in the tropics since the 1980s
[2]–[4]. Both local decision makers and international initiatives
such as reducing emissions from deforestation and forest degra-
dation in developing countries are calling for accurate, annual
maps of tropical forests at fine spatial resolution, which can be
used to better assess biological conservation, carbon and water
cycles, and to develop improved plans for sustainable manage-
ment [3]–[8].

Remote sensing is an essential tool for assessing forest cover
dynamics from the local to global scale. Numerous studies have
used optical images to generate forest cover maps, including
moderate resolution images such as Landsat thematic mapper
(TM) and enhanced thematic mapper plus (ETM+) [9]–[12],
coarse resolution images such as moderate resolution imaging
spectroradiometer (MODIS) [13], [14] and NOAA advanced
very high resolution radiometer [15], and combined imagery
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using multiple sensors [12], [16]–[18]. Coarse resolution im-
ages have the potential to track the annual dynamic of large,
intact forests, but are not suitable for the identification of small
and fragmented forests. Very high-resolution images such as
worldview [19] can provide more details about forests, but
these images have not been used to monitor annual dynam-
ics over large areas due to high monetary and computational
costs. Recently, several 30 m scale global forest maps have been
generated, such as fine resolution observation and monitoring-
global land cover (FROM-GLC) by Tsinghua University [20],
global forest change (GFC) [9] by the University of Maryland,
and GlobeLand30 by the National Geomatics Center of China
[10]. These publicly available maps were generated from anal-
yses of Landsat data [9], [20] or the combination of Landsat
and the Chinese environmental protection and disaster monitor-
ing satellite (HJ-1) [10]. Only GFC provides annual maps of
forest loss, and none of these Landsat-based datasets provide
annual dynamics of gain and net change because good quality
images are lacking due to persistent cloud cover [21]. In addi-
tion, landscapes in tropical zones are typically fragmented into
small patches of land use and land cover types, making land
cover classification more complicated [22], [23].

The synthetic aperture radar (SAR) acquired images not af-
fected by cloud cover. Long wavelength SARs, such as P- and
L-bands, easily penetrate the forest canopy and capture infor-
mation on the forest structure, and are therefore useful in forest
mapping [3], [24]. With the public availability of 50 and 25 m
phased array type L-band synthetic aperture radar (PALSAR)
and PALSAR-2 orthorectified mosaic images produced by the
Japan Aerospace Exploration Agency (JAXA), the application
of SAR-based data to forest mapping has greatly accelerated
from local to global scales [6], [24], [25]. Recently, annual,
global-scale forest/nonforest (F/NF) maps (25 m) from 2007 to
2010 were released using variable HV thresholds based on the
25 m PALSAR mosaic data [25]. However, forest maps derived
from SAR images solely may have some shortcomings, because
SAR backscatter energy, which relies on the physical structure,
may be affected by moisture content and underlying soil condi-
tions [26], [27]. Buildings in urban or rural areas (built-up) and
high biomass croplands (e.g., sugarcane and banana plantations)
may also have backscatter coefficients like that of forests, which
may, therefore, reduce the accuracy of PALSAR-based forest
maps. These land cover types need to be identified and elimi-
nated in advance or during postclassification [25], [28], [29].

Recently, several studies reported forest cover mapping
through integration of both optical and L-band SAR images
[30]–[32], particularly Landsat and PALSAR data [3], [33]–
[35]. Most of them generated forest cover maps at a specific time
point or over a multiyear interval (e.g., five years). The increas-
ing availability of time series optical and SAR data for large ar-
eas, batch preprocessing software/tools for cloud detection (e.g.,
Fmask [21]) and atmospheric correction (e.g., Landsat ecosys-
tem disturbance adaptive processing system, LEDAPS [36]),
and cloud-based computation resources (e.g., Google Earth
Engine, GEE, https://earthengine.google.com) enables a shift
from traditional bitemporal change detection analyses to time
series based change detection analyses [3]. The latter approach
could provide more details about forest location, land cover
change, and spatial scale over time through complementary

structural, spectral, and phenological metrics from SAR and
time series optical data.

In our previous study, we developed a decision tree based
forest mapping algorithm using 25 m PALSAR and time se-
ries Landsat TM/ETM+ data [35], [37]. We first identified and
generated forest maps using PALSAR data, then improved map
accuracy by eliminating misclassified pixels associated with
built-up areas using the maximum normalized difference veg-
etation index (NDVI) derived from time series Landsat data.
However, commission error from high biomass crops such as
sugarcane and banana, which are widely distributed in tropics
and subtropics, still needs to be addressed when this algorithm
is applied to quantify forested areas in a year or multiple years
over the complex and fragmented tropical landscapes [22], [23].
In addition, the availability of global mosaic data obtained us-
ing the PALSAR-2 sensor onboard advanced land observation
satellite-2 (ALOS-2) makes it possible to quantify and moni-
tor tropical forest dynamics over many years (2007–2010, 2015
to present). The utility of our pixel- and phenology-based al-
gorithm with PALSAR-2 and Landsat ETM+ and operational
land imager (OLI) needs to be evaluated, too.

The objectives of this study are to

1) analyze whether our mapping algorithm developed for
ALOS PALSAR and Landsat TM/ETM+ could be applied
to ALOS-2 PALSAR-2 and Landsat ETM+/OLI images;

2) develop a feasible algorithm to eliminate commission er-
rors from misclassification of high biomass crops like
sugarcane and banana; and

3) conduct novel forest mapping and change detection in the
second decade of the 21st century.

II. MATERIALS AND METHODS

A. Study Area

The study area is Hainan Island [19°20′N–20°10′N,
108°21′E–111°03′E, about 3.38 million ha, Fig. 1(a)], China.
The topography of the island is characterized by hills in the
central regions and lowlands along the coasts. Wuzhi Mountain,
with an elevation of 1867 m above sea level, is the highest moun-
tain on the island. The climate varies from tropical to subtrop-
ical. The annual mean temperature is approximately 23–25 °C,
and monthly temperature varies between ∼16 °C in January and
∼30 °C from May to July. The average annual precipitation is
1500–2000 mm, 80% of which occurs during the rainy season
from May to October. The spatial distribution of precipitation,
however, can be as high as 2400 mm in the central and eastern
area, and as low as 900 mm in the coastal areas of the southwest.
Historically, natural forests almost completely covered the is-
land. However, since the 1950s, more than half of the natural
forests have been converted to industrial forests, such as natural
rubber (Hevea brasiliensis) or eucalyptus (Eucalyptus robusta),
and other land-use types to meet economic demands. In the
1980s, the coverage of natural forests dropped to 9.7%, down
from 25.7% in 1956 [38]. After the 1980s, extensive reforesta-
tion and afforestation occurred on the island. Forest coverage
reached 61.5% with an area of 2.11 million ha in 2014 [39].
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Fig. 1. Study area and ALOS/ALOS-2 L-band SAR images: (a) topography of Hainan Island with county boundaries and the locations of ground reference sites
(GRS) of 2015 used for algorithm training and accuracy assessment (corresponding statistical data are presented in Tables I and S1), (b) acquisition dates of the
PALSAR/PALSAR-2 imagery, and (c) false color composite of 25 m PALSAR-2 orthorectified mosaic imagery (R/G/B = HH/HV/HH – HV) of Hainan Island in
2015.

B. Ground Reference Data

Same ground reference sites (GRS) as reported in our pre-
vious study [35] to map forest for 2010 were used here. These
GRS were determined to be areas of forest, built-up, water, and
cropland using ground-based and geotagged landscape photos

and Google Earth’s (GE) very high spatial resolution (VHSR)
satellite images acquired circa 2010 [35]. The landscape photos
were uploaded to the Global Geo-Referenced Field Photo Li-
brary (http://www.eomf.ou.edu/photos/), a free and public portal
for people to download, upload, and share GPS-embedded land
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TABLE I
STATISTICAL INFORMATION OF GRS USED IN THIS STUDY

Forest Built-up Water Cropland

Y2010 Training 275 (1599) 13 (241) 13 (1091) 32 (421)
Validation 649 (3065) 30 (419) 29 (1047) 77 (505)

Y2015 Training 333 (1591) 13 (365) 16 (1418) 22 (167)
Validation 776 (4070) 30 (278) 36 (658) 52 (734)

The first values at each cell are the number of GRS, and the second values in parentheses
are total area of the GRS in hectares. Built-up, water, and croplands were regarded as
nonforest. To evaluate the 2015 F/NF map, 677 F/NF GRS at 0.25 ha (50 × 50 m2)
were randomly generated by a computer.

cover photos (see Fig. S1). During GRS delineation, rainfor-
est, plantations of rubber and eucalyptus were regarded as for-
est, while buildings and impervious surfaces, like roads, were
treated as built-up. Cropland included paddy rice, dry land, and
other crops.

The 2010 GRS was updated and few more were added with
references of geotagged landscape photos taken in February
2015 and October 2016, and GE VHSR images acquired circa
2015. These updated 2015 GRS [see Fig. 1(a)] were used for
developing and validating our forest mapping algorithm us-
ing PALSAR-2 and Landsat ETM+/OLI imagery. The statis-
tical information of GRS of 2010 and 2015 is presented in
Table S1. Both the GRS of 2010 and 2015 were randomly di-
vided into training (30%) and validation (70%) datasets, using
NOAA/NOS/NCCOS/CCMA Biogeography Branch’s Design
Tool for ArcGIS (see Table I).

Furthermore, random GRS with areas of 0.25 ha (50× 50 m2)
was generated using GEE’s random function for map accuracy
assessment. The island is about 2° × 2° in size, so 800 random
GRS (about 200 per 1° × 1° grid) was created within a 5-km
buffer zone of the entire island (see Fig. S2). These GRS were
identified as forest (forest coverage > 90%) or nonforest (forest
coverage < 10%) with GE VHSR satellite images acquired circa
2015. In total, we had 351 forests, 326 nonforest, and 123 mixed
forest GRS. These 677 F/NF GRS were used to evaluate the
accuracy of the 2015 forest map. To avoid confusion, we called
these GRS as random GRS, while the empirical delineated ones
as empirical GRS.

C. Satellite Image Data and Preprocessing

1) PALSAR and PALSAR-2 Data and Preprocessing: The
annual 25 m PALSAR orthorectified mosaic data from 2007
to 2010 and PALSAR-2 mosaic data in 2015 were down-
loaded from the ALOS Research and Application Project
overseen by JAXA’s Earth Observation Research Center
(http://www.eorc.jaxa.jp/). Both PALSAR and PALSAR-2 are
L-band SARs that can transmit and receive horizontally or verti-
cally polarized signals, allowing for horizontal transmission and
reception (HH) and horizontal transmission and vertical recep-
tion (HV). Six strip images covered the island, and most images
were acquired in June and July [see Fig. 1(b)]. These datasets
were already topographically (slope) corrected, radiometrically
calibrated, and geo-referenced to geographical coordinates [25].
The HH and HV bands were converted from amplitudes into

normalized radar cross-section backscatter (dB), using [40]

γ0(dB) = 10 log10DN 2 + CF (1)

where γ0 is the backscattering coefficient, DN is the dig-
ital number value in HH or HV, and CF is the absolute
calibration factor set at –83. Two composite images of ra-
tio (HH/HV) and difference (HH – HV) were generated for
classification [30]. The calculation of backscatter coefficients
and generation of ratio and difference bands were finished
in ENVI/IDL (http://www.harrisgeospatial.com/). As shown in
Fig. 1(c), forests are shown in a light green color in the false
color composite of PALSAR-2 imagery in 2015. PALSAR and
PALSAR-2 images were not available in GEE’s public data cata-
log, so they were manually uploaded as GEE assets for analysis.

2) Landsat Data and Preprocessing: Hainan Island is cov-
ered by four path/rows Landsat images [Worldwide Reference
System (WRS-2) 123/046, 123/047, 124/046 and 124/047].
A total of 643 standard level-one terrain-corrected (L1T)
TM/ETM+/OLI surface reflectance (SR) images, from 2006
to 2010 and 2014 to 2015, were used (see Fig. 2) and were
available in GEE as image collections. The TM/ETM+ SR data
were processed using LEDAPS [36], while Landsat OLI SR data
were generated by LaSRC software [41]. Poor quality observa-
tions caused by clouds and shadows were identified by Cfmask
[21]. Pixels that are cloud-free and not in ETM+ scan-line-off
strips were selected as good quality observations. The annual
total number of observations was the lowest in 2008, and the
highest in 2015, and most of the study area has more than 20
good-quality observations throughout the five years. For each
Landsat TM/ETM+/OLI imagery, NDVI [42], enhanced vege-
tation index (EVI) [43], and land surface water index (LSWI)
[44], [45] were calculated using

NDVI =
ρNIR − ρred

ρNIR + ρred
(2)

EVI = 2.5 × ρNIR − ρred

ρNIR + 6 × ρred − 7.5 × ρblue + 1
(3)

LSWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(4)

where ρblue , ρred , ρNIR , and ρSWIR are the blue (450–520 nm),
red (630–690 nm), near-infrared (NIR, 760–900 nm), and
shortwave-infrared (SWIR, 1550–1750 nm) SR bands of Land-
sat TM/ETM+/OLI imagery, respectively. Annual maximum
NDVI maps (NDVImax , hereinafter) and frequency maps,
based on the criteria of NDVI < 0.5 and LSWI < 0.1 (see
Section II-D), were generated using Landsat imagery acquired
in the previous and current years (e.g., 2006 and 2007 for 2007)
for 2007, 2008, 2009, and 2010, and 2015, respectively.

3) Data Fusion of PALSAR/PALSAR-2 and Landsat Data:
The 25 m PALSAR and PALSAR-2 data were resampled to
30 m to match the spatial resolution of Landsat images using
a nearest neighbor sampling method, which does not introduce
new pixel DN vectors into image statistical distribution and
is good for classification by statistical techniques [46]. Then,
a data cube was built for PALSAR, PALSAR-2, and Landsat
(PALSAR/Landsat, hereafter) images at 30 m spatial resolution.
The resultant PALSAR/Landsat data cube was used to generate
annual forest maps on the island.
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Fig. 2. Data availability of annual Landsat TM/ETM+/OLI collection of Hainan Island from 2007 to 2015. Images in first rows are number of total observation,
in second row are number of good observation, and in third row are percentage of good observation from 2007 to 2015.

Fig. 3. Workflow for mapping tropical forest through analysis of ALOS PALSAR/PALSAR-2 and time series Landsat TM/ETM+/OLI imagery.

D. Algorithms for Forest Mapping

According to FAO, forest is defined as land spanning more
than 0.5 ha with tree height of >5 m and canopy cover of
>10% [47]. This forest definition includes both forest struc-
ture and canopy information, which can be quantified by a
PALSAR/Landsat data cube. Our forest mapping workflow is
presented in Fig. 3. Forest was first identified using structure-

based metrics from PALSAR/PALSAR-2 images, then re-
duced commission errors using forest canopy metrics from
time series Landsat data. A structure-based signature analysis
of forest/nonforest (F/NF) (see Fig. S3) was performed with
PALSAR data in 2010, and a rule-based forest classifica-
tion algorithm (−17 < HV < −9 and 0.35 < Ratio < 0.85 and
1.5 < Diff < 9.0, Fig. S4, rounded 5% and 95% bounds were
used as thresholds) was developed [35]. Similar signature anal-
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Fig. 4. Signature analyses of forests, high biomass sugarcane, and banana plantations: GRS Photos of (I) low biomass sugarcane plantation taken on 2013/07/15
(19.5871 °N, 109.3468 °E), (II) high biomass sugarcane taken on 2016/10/15 (19.6043 °N, 109.3468 °E), (III) high biomass banana plantation taken on 2015/04/24
(19.3856 °N, 109.2839 °E), and (IV) harvest banana plantation taken on 2013/07/15 (19.8085 °E, 109.8357 °E). Temporal profile of Landsat NDVI/LSWI/EVI
for (a) sugarcane plantation from GRS I and (b) banana plantation from GRS III. Histograms of (c) forest and high biomass sugarcane plantation in PALSAR HV
band, (d) forest and high biomass banana plantation in PALSAR-2 HV band, and (e) FHarvest (NDVI < 0.5 and LSWI < 0.1) of forest, high biomass banana, and
sugarcane.

ysis of F/NF based on 2015 training GRS was performed
on PALSAR-2 (see Fig. S5) data. The F/NF histograms on
PALSAR-2 HH, HV, ratio, and difference bands had similar
patterns with results based on PALSAR, but differ slightly in
boundary values. Therefore, a similar forest classification al-
gorithm for PALSAR-2 imagery was built using rounded 5%
and 95% confidence intervals of the histograms, specifically,
−19 < HV < −7.5, 0.20 < Ratio < 0.95, and 0 < Diff < 9.5.
In addition, the temporal variability of forest backscatter coeffi-
cients during 2007–2009 was evaluated using the training GRS
of 2010 (see Fig. S6). The results indicated that the backscatter
coefficients of forest in HH, HV, ratio, and difference during
2007–2010 were quite stable. Therefore, annual forest maps
during 2007–2009 were generated using the same algorithm
developed using PALSAR imagery from 2010 (see Fig. S4).

For spatial consistency, a 5 × 5 median filter was performed to
reduce the salt-and-pepper noise on the SAR-based F/NF maps.

Our previous study reported canopy-based signature analyses
with time series Landsat images in 2010 using yearly maximum
NDVI values greater than 0.65 (NDVImax > 0.65, Fig. S7) as
a threshold for forest canopy. Those pixels with NDVImax less
than 0.65 were assumed as nonforest canopy, including the built-
up land cover, such as urban areas [35]. In this study, we found
high biomass crops such as sugarcane and banana plantations,
which are widely distributed in tropical and subtropics, have
similar HV backscatter coefficients as forests in both PALSAR
and PALSAR-2 [see Fig. 4(c) and (d)] data. Those croplands
would be misclassified as forest if the SAR data were acquired in
a season when those croplands have high biomass. By observing
the phenological change of sugarcane and banana plantations
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[see Fig. 4(a) and (b)], we found that they usually have low
values of NDVI (< 0.5) and LSWI (< 0.1) after harvest due to
the exposure of crop residuals and soils [48]. The variation in
crop phenology and climate could bias the harvest signal from a
time-specific image or a single imagery composite. Therefore, a
frequency-based harvest signal (NDVI < 0.5 and LSWI < 0.1)
from analyses of all Landsat TM/ETM+/OLI images in April
to December was used here. Images in January–March were not
used as rubber tree leaves senesce in subtropical and northern
tropical zones during this period [35]. The harvest frequency
map was generated in two steps. First, harvest was determined
using

Harvest =
{

1 LSWI < 0.1 and NDVI < 0.5
0 Other values

. (5)

Second, calculating harvest frequency using

FHarvest =
∑

NHarvest∑
NTotal −

∑
NBad

× 100 (6)

where FHarvest is the harvest frequency scaled to 0 and 100,
NHarvest is the number of images where LSWI < 0.1 and
NDVI < 0.5, NTotal is the number of total observations, and
NBad is the number of bad observations (e.g., clouds, shadows,
and ETM+ scan-line-off strips). A harvest frequency of 5% was
selected as a threshold for nonforest pixels that could be associ-
ated with high biomass croplands such as sugarcane and banana
plantations [see Fig. 4(e)].

Based upon these analyses, we proposed a PALSAR/Landsat-
based forest mapping algorithm using the following criteria:
1) forest signatures in PALSAR or PALSAR-2; 2) NDVImax >
0.65; and 3) FHarvest < 5% (Apr.–Dec.).

E. Regional Implementation of the PALSAR/Landsat-Based
Forest Mapping Algorithm

The algorithm was running for individual pixels and gen-
erated annual forest maps for 2007–2010 and 2015 using the
PALSAR/Landsat data cube. For temporal consistency over the
years at individual pixels, two postclassification consistency
analyses were carried out on the PALSAR/Landsat-based F/NF
maps.

First, the consistency in HV values was evaluated. A previ-
ous study found that the average γ0

HV of the deforested area
was systematically lower by 1–4 dB than that of natural for-
est, and thus, a threshold of 1 dB from time series difference
of PALSAR γ0

HV was used to detect tropical deforestation in
Indonesia from 2007 to 2010 [6]. Based on this observation, a 1
dB difference in the HV band was used to check for consistency
in the annual F/NF maps. The PALSAR HV image in 2007
was taken as a benchmark and generated difference images of
HV2008-2007, HV2009-2008, HV2010-2009, and HV2015-2010 for con-
sistency analysis. Using 2007–2008 as an example, forest gain
should meet HV2008-2007 > 1 dB while forest loss should satisfy
HV2008-2007 < –1 dB. The forest gain and loss are more evident
in HV2015-2010 from PALSAR-2 and PALSAR (see Fig. S8);
therefore, the thresholds of 1/–1 dB are still suitable for forest
gain/loss consistent analysis between PALSAR and PALSAR-
2. Second, a logical consistency check was performed on the
four-consecutive annual F/NF maps with a focus on 2008–2009

(2 years) out of 2007–2010 (4 years) [37]. A total of 16 dif-
ferent change combinations, from N → N → N → N to F →
F → F → F (N indicates nonforest, F represents forest), were
analyzed. Unreasonable changes of N → N → F → N and N
→ F → N → N, as well as F → F → N → F and F → N → F
→ F, were regarded as classification errors or image noise and
were converted to N → N → N → N and F → F → F → F,
respectively. The other unreasonable changes of N → F → N
→ F, N → F → F → N, F → N → N → F, and F → N → F →
N were unprocessed because of too many uncertainties.

F. Map Accuracy Assessment for PALSAR/Landsat-Based
Forest Maps

The resultant 2010 F/NF map was evaluated using empiri-
cal GRS of 2010. The resultant 2015 F/NF map was evaluated
using 70% of empirical and random GRS. The error-adjusted
matrix in terms of proportion of area and estimates of producer’s
accuracy (PA), user’s accuracy (UA), and overall accuracy
(OA) with 95% confidence intervals was used to evaluate map
accuracy as proposed by a previous study [49]. The error-
adjusted matrix was a statistically robust and transparent ap-
proach for assessing accuracy, a method that has recently be-
come increasingly common [49]–[51]. The annual F/NF maps
of 2007, 2008, and 2009 were generated using the same algo-
rithm with PALSAR/Landsat data. These F/NF maps were not
validated with independent GRS by considering the signal of
PALSAR (see Fig. S6) and Landsat data were stable during
these periods.

G. Intercomparison With Other Available Forest Maps

The empirical GRS of 2010 were also used to assess the
public F/NF maps of 2010 from 1) JAXA, which produced the
map using 25 m PALSAR data [25], and optical-based data
of 2) FROM-GLC (segmentation approach version) [20] and
3) GlobeLand30 [10]. Since annual F/NF maps of 2007–2010
cannot be generated from GFC percentage tree cover in 2000
and annual GFC loss maps [9], GFC maps were not incorporated
for comparison.

Subsequently, maps of forest cover percentage at 1-km res-
olution were generated from the 30 m spatial resolution F/NF
maps of PALSAR/Landsat, FROM-GLC, and GlobeLand30 to
match the spatial resolution of the National Land Cover Dataset
of China (NLCD) F/NF map. The spatial distribution of forests
in these F/NF maps was compared at the county level.

H. Forest Cover Dynamic Analysis Over Years

Forest cover was divided into 10 groups according to elevation
ranges of 0–50, 50–100, 100–200, 200–300, 300–400, 400–600,
600–800, 800–1000, 1000–1400, and 1400–1867 m. Annual
forest area for each elevation group was calculated and their dy-
namics were explored. In addition, spatial–temporal consistency
of the F/NF maps was evaluated pixel-by-pixel by counting the
occurrences of forest during 2007–2015 (e.g., 1, 2, 3 . . . times),
and forest area was calculated according to the frequency of
forest occurrence. Maps of consistent forest, forest gain, forest
loss, and consistent nonforest during 2007 and 2015 were pro-
duced, and the area of forest gain and loss at different elevation
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TABLE II
ACCURACY ASSESSMENT OF DIFFERENT F/NF MAPS OF 2010 AND 2015 IN

HAINAN ISLAND USING GROUND REFERENCE SITES (GRS)

Year F/NF Product GRS PA (%) UA (%) OA (%)

2010 PALSAR/Landsat Empirical 96.31 99.45 97.35
JAXA 69.22 98.62 82.42

FORM-GLC 86.05 95.89 88.38
GlobeLand30 94.44 90.90 89.72

2015 PALSAR/Landsat Empirical 94.94 99.62 96.43
Random 96.58 91.22 92.47

Detailed accuracy assessment of different F/NF maps is presented in Tables S2–S8;
PA: Producer’s accuracy; UA: User’s accuracy; OA: Overall accuracy.

groups were calculated. Since JAXA annual F/NF maps (2007–
2010) were publicly available, the forest dynamics analysis was
performed on both F/NF maps of PALSAR/Landsat-based and
JAXA, and the results during 2007 and 2010 period from these
two products were compared.

III. RESULTS

A. Accuracy Assessment of Forest Cover Maps in 2010 and
2015

Accuracy assessments with GRS showed that the PAL-
SAR/Landsat F/NF maps had the highest accuracy (see Tables II
and S2–S8). In 2010, assessments showed that PA, UA, and OA
for the PALSAR/Landsat F/NF map were 96.31%, 99.45%, and
97.35%, respectively. This map was followed in order of ac-
curacy by GlobeLand30, FROM-GLC, and JAXA. These F/NF
maps hold an OA of 89.72%, 88.38%, and 82.42%, respectively.
Among these F/NF maps, the JAXA F/NF map had a high UA
of 98.62%, but the lowest PA of 69.22%. In 2015, the PAL-
SAR/Landsat F/NF map shows high accuracy when validated
with different GRS. The OA for empirical and random GRS was
96.43% and 92.47%, respectively.

B. Intercomparison Between F/NF Maps of PALSAR/Landsat
and JAXA, FROM-GLC, GlobeLand30, and NLCD in 2010

All F/NF maps showed similar distributions of dense forest
coverage in the middle mountain areas (see Fig. 5), but had sig-
nificant differences in the rest of the island. In the northwestern
coastline, there was almost no forest in the F/NF maps produced
by JAXA and FROM-GLC. In addition, very few forests were
observed in the JAXA F/NF map in the central, northeastern,
and southeastern regions [see Fig. 5(b)] when compared with
the other four F/NF maps. The GlobeLand30 F/NF map showed
the densest forest coverage among these five maps, while the
PALSAR/Landsat F/NF map and the NLCD had a very similar
forest spatial distribution [see Fig. 5(a) and (e)].

The PALSAR/Landsat F/NF map at the county scale is signif-
icantly correlated with those of JAXA (R2 = 0.84, P < 0.01),
FROM-GLC (R2 = 0.82, P < 0.01), GlobeLand30 (R2 =
0.81, P < 0.01), and NLCD (R2 = 0.91, P < 0.01) with root
mean squared error of 21 400, 19 000, 21 300, and 14 500 ha,
respectively [see Fig. 5(g)]. The slopes of forest area between
PALSAR/Landsat and JAXA, FROM-GLC, GlobeLand30, and
NLCD at the county scale are 0.99, 0.84, 0.91, and 0.96,
respectively.

TABLE III
FOREST AREA OF HAINAN ISLAND IN 2010 FROM DIFFERENT DATA SOURCES

Mapped area (ha) Adjusted area (ha)

PALSAR/Landsat 2.05 × 106 2.12 × 106 (±4231)
JAXA 1.31 × 106 1.87 × 106 (±10 695)
FROM-GLC 2.00 × 106 2.23 × 106 (±8328)
GlobeLand30 2.41 × 106 2.32 × 106 (±8627)
NLCD (1 km res.) 2.15 × 106 –
Statistical data 2.04 × 106 –

The adjusted area is derived from an error-adjusted matrix considering user
accuracy, and values in bracket are standard deviation.

Total forest area estimates in 2010 by JAXA were signif-
icantly lower than the other of the F/NF maps, with an ad-
justed area of 1.87 × 106 (±10 695) ha (1.31 × 106 ha mapped
area, Table III). The GlobeLand30 map had the largest forest
area of 2.3 × 106(±8627) ha (2.41 × 106 ha mapped area),
since it estimated more forest in most regions [see Fig. 5(d)].
The adjusted forest area derived from PALSAR/Landsat and
FROM-GLC was 2.1 × 106(±4231) and 2.23 × 106(±8328)
ha, respectively. The mapped area of NLCD was 2.15 × 106 ha.
Among these F/NF maps, the PALSAR/Landsat map had the
lowest 95% confidence interval (±4231 ha) in forest area, and
the mapped (2.05 × 106 ha) and adjusted areas were the closest
to the statistical data (2.04 × 106 ha) [52].

C. Intercomparison of Annual Forest Dynamics (2007–2010)
Between JAXA and PALSAR/Landsat F/NF Maps

Large inconsistencies were found between the PAL-
SAR/Landsat and JAXA F/NF maps for all years in those areas
with an elevation less than 400 m [see Fig. 6(a)–(d)]. Above this
elevation, the two products had a high degree of consistency:
the lower the elevation, the larger the difference between these
two maps. Forests in the PALSAR/Landsat maps were mainly
distributed in those areas with an elevation of less than 600 m,
while most of JAXA’s forests were located within those areas
at an elevation of 200–800 m. In addition, forest area with an
elevation less than 400 m in the JAXA F/NF map in 2009 was
significantly higher than the other three years [see Fig. 6(e)].
Less than half of the JAXA forests (about 7.50 × 105 ha) in
high elevation mountainous regions were detected as unchanged
during 2007 and 2010 [see Fig. 7(a) and (c)]. Most of the re-
maining pixels were identified as forest one or two times during
the four years. The largest agreement between JAXA and PAL-
SAR/Landsat F/NF occurs in 4-year forest pixels [see Fig. 7(d)].
The poor spatial consistency of the JAXA annual F/NF maps
indicates that they are unreliable for forest dynamics analysis at
low-elevation regions on Hainan Island.

The PALSAR/Landsat F/NF maps illustrated a gradual in-
crease of forests in those areas with an elevation of less than
400 m during 2007 and 2010 [see Fig. 6(f)]. When com-
pared with 2007, 2008, and 2010, slightly more forest was
found in 2009 at elevations less than 400 m. Above this el-
evation, forest areas were almost unchanged. The overlapped
PALSAR/Landsat F/NF map between 2007 and 2010 showed
very good consistency [see Fig. 7(b)]. The stable forest area
was about 1.8 million ha and mainly distributed in mountainous
regions and surrounding lowlands [see Fig. 7(b) and (c)].
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Fig. 5. Forest cover maps of (a) PALSAR/Landsat, (b) JAXA, (c) FROM-GLC, (d) GlobeLand30, (e) NLCD at 1-km spatial resolution of Hainan Island in 2010,
and (g) regression plots of PALSAR/Landsat forest area against forest area of JAXA, FROM-GLC, GlobeLand30, and NLCD at county scale.

Fig. 6. Forest area dynamic comparisons at different elevations on Hainan Island, China, based on the JAXA and PALSAR/Landsat F/NF maps for (a) 2007,
(b) 2008, (c) 2009, (d) 2010, and grouped forest dynamic for (e) JAXA (2007–2010), and (f) PALSAR/Landsat (2007–2010, 2015), respectively.

D. Forest Dynamic on Hainan Island Between 2007 and 2015
From PALSAR/Landsat F/NF Maps

The annual PALSAR/Landsat F/NF maps from 2007 to 2015
had good spatial consistency (see Fig. 8). Due to less rainfall
and a dry climate, very few forests are distributed in the western
regions. Few changes were found from 2007 to 2010, but more
evident changes were found in the west-central, northcentral,
and northeast between 2010 and 2015 (see Fig. 8). The stable
forest area from 2007 to 2015 accounts for 70.68% of the total

forest area. Total mapped forest areas on Hainan Island were
1.87 million, 1.92 million, 2.05 million, 2.05 million, and 2.12
million ha, for 2007, 2008, 2009, 2010, and 2015, respectively.

Fig. 9 shows the spatial distribution of forest gain and loss be-
tween 2007 and 2015. The stable forest area from 2007 to 2015
accounted for 50.89% of the total island land area. Reforesta-
tion/afforestation is more dramatic in the western and northern
regions (zoom view I in Fig. 9) and forest gain accounted for
12.65% of the total island land area. High forest gain (162 300



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 7. Forest spatial dynamic comparison on Hainan Island, China: (a) overlapped map from 2007 to 2010 JAXA F/NF maps, (b) overlapped map from 2007
to 2010 PALSAR/Landsat F/NF maps, (c) area bar plot of forest convention between PALSAR/Landsat and JAXA F/NF maps, and (d) bubble plot of forest
convention between PALSAR/Landsat and JAXA maps. The numbers (1–4) in the legends of (a) and (b) and coordinates of (c) and (d) represent the number of
years a pixel was identified as forest during 2007–2010. Bubble size corresponds to the forest area.

ha) was found from 2008 to 2009, while gains from 2007 to
2008 and from 2009 to 2010 ranged from 74 079 to 90 835
ha (see Table IV). Total forest gain was 207 927 ha for 2010
to 2015 and 414 568 ha for 2007 to 2015. In addition to a net
forest loss (2333 ha) from 2009 to 2010, net forest gains were
found for the remaining. The total net forest gain from 2007 to
2015 was 235 921 ha, about 26 213 ha (1.23%) per year.

Forest loss occurred mainly in northeastern regions like
Haikou and Wenchang city (zoom view III in Fig. 9) and its
area accounted for 5.45% of the total island land area. The an-
nual forest loss area between 2007 and 2010 ranged from 30 254
to 76 412 ha and total forest loss between 2007 and 2015 was
178 647 ha (see Table IV). Consistent nonforest accounted for
31.01% of the island’s land cover and was mainly distributed in
regions close to the coastlines [see Fig. 9(I)].

About than 95% of forest gain and loss from 2007 to 2015
happened at an elevation of less than 400 m, and slight gains
and losses occurred at elevations between 400 and 800 m (see
Table V). About 99% of the forest was unchanged above an
elevation of 800 m. The proportion of forest gain above 50 m
elevation is slightly larger than the proportion of forest loss.

TABLE IV
FOREST LOSS AND GAIN BETWEEN 2007 AND 2015 (IN HA)

Gains Losses Net change

2007–2008 90 835 43 542 47 293
2008–2009 162 300 30 254 132 046
2009–2010 74 079 76 254 –2333
2010–2015 207 927 148 658 59 269
2007–2015 414 568 178 647 235 921

More than 95% of net forest gain is observed at regions with
elevation less than 600 m.

IV. DISCUSSION

A. Forest Mapping Using PALSAR/PALSAR-2 and Time Series
Optical Images

The L-band PALSAR/PALSAR-2 and time series optical im-
agery has been increasingly used for forest mapping in recent
years [6], [25], [33], [35], [53]. Our optical–SAR-based forest
mapping algorithm has been successfully applied in Mainland
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Fig. 8. Spatial distribution of PALSAR/Landsat F/NF maps of Hainan Island: (a) 2007, (b) 2008, (c) 2009, (d) 2010, (e) 2015, and (f) overlapped map from 2007
to 2015 PALSAR/Landsat F/NF maps. In legends, 1–5 (f) represent the number of years a pixel was identified as forest during 2007–2015, and the percentage
values were their proportion to the total forest area.

Fig. 9. Spatial distribution of forest gain and loss during 2007–2015 on Hainan Island: (I) aggregated forest loss and gain, (A–E) illustration of forest gain hot
spot due to rubber plantation expansion in Danzhou city (zoom extent II) shown in Landsat TM/ETM/OLI false color composite, and (a)–(e) corresponding F/NF
map of (A)–(E). Forest is shown in green. (F)–(J) Illustration of forest loss hot spot in Wenchang City (zoom extent III) shown in false color composite of Landsat
TM/ETM+/OLI imagery, and (f)–(j) corresponding F/NF maps of (F)–(J).
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TABLE V
STATISTICAL INFORMATION OF FOREST DYNAMICS AT DIFFERENT ELEVATIONS IN HAINAN ISLAND DURING 2007 AND 2015

0–50 m 50–100 m 100–200 m 200–300 m 300–400 m 400–600 m 600–800 m 800–1000 m 1000–1400 m 1400–1867 m

Loss (ha/%) 70 892/40.0 40 903/23.1 41 413/23.4 13 297/7.5 5512/3.1 3217/1.8 1218/0.7 445/0.3 176/0.1 16/0.01
Gain (ha/%) 130 427/31.4 110 211/26.6 101 877/24.5 35 114/8.5 16 016/3.9 12 010/2.9 4972/1.2 3532/0.9 936/0.2 66/0.02
Net change (ha/%) 59 535/25.0 69 308/29.1 60 464/25.4 21 817/9.2 10 504/4.4 8793/3.7 3754/1.6 3087/1.3 760/0.3 50/0.02

Fig. 10. Signature difference of forest between PALSAR and PALSAR-2
based on forest GRS of 2010 and 2015, respectively: (a) HH, (b) HV, (c) ratio
(HH/HV), and (d) difference (HH – HV).

Southeast Asia [30], China [31], and monsoon Asia [54] with
50 m PALSAR and MODIS data. When the 25 m PALSAR
dataset was available in 2014, we extended this algorithm in
Hainan Island, China [35] and Oklahoma, USA [37] with 25 m
PALSAR and Landsat TM/ETM+ imagery. With the release of
PALSAR-2 global mosaic data in 2016, we found that it has
good consistency with PALSAR data (see Figs. S3 and S5),
and our PALSAR/Landsat-based forest mapping algorithm can
be applied to PALSAR-2 and time series Landsat ETM+/OLI
imagery. The slight left shift of forest HH and HV values in
PALSAR-2 over that of PALSAR (see Fig. 10) can be attributed
to the difference in sensors, image acquisition time, and GRS.
With the powerful GEE cloud computing platform and cost-free
data policy, it is easy to implement this algorithm to track tropi-
cal forest dynamics (2007–2010, 2015 onwards) at large scales.
However, the thresholds for forest mapping using PALSAR-2
data in other regions should be further evaluated.

In previous studies, we found that commission errors were
serious in urban regions due to similar backscatter coefficients
of PALSAR between forest and built-up, and therefore used
NDVImax from MODIS [54] and Landsat [35] to eliminate
those misclassified pixels in PALSAR-based F/NF maps. In
this study, high biomass crops such as sugarcane and banana
plantations were found to have similar backscatter coefficients

as forest, too [see Fig. 4(c) and (d)]. Others also found that
PALSAR radar signals increased quickly with sugarcane plant
height until a threshold height of about 2.3 m [55]. Most cul-
tivated banana plants can reach 5 m tall and are sometimes
referred to as banana trees. These high biomass crops were
likely to be misclassified as forest if PALSAR/PALSAR-2 ac-
quisition dates correspond to crop maturity and high biomass
dates. For example, the second PALSAR strip on left in 2009
was acquired on September 15 [see Fig. 1(b)], which was during
the season that both sugarcane and banana have high biomass.
This strip was captured in a region that has the densest banana
and sugarcane crops [39]. The commission error was serious in
PALSAR-based F/NF map [see Fig. 11(b)], and that was why
the forest area in JAXA PALSAR-based F/NF map of 2009 in
regions with elevation less than 400 m was significantly higher
than those of the remaining three years [see Fig. 6(e)]. The
proposed harvest frequency criteria (FHarvest, NDVI < 0.5, and
LSWI < 0.1) applied to time series Landsat images that were
acquired from periods of harvest to early crop rotation showed
good performance in eliminating commission errors of these
high biomass crops [see Figs. 11(d) and 6(f)]. Our optical/SAR-
based forest maps have good consistency at different elevations
and across several years. Introducing FHarvest has generated a
more accurate F/NF map for 2010 (OA = 97.2%) than our pre-
vious study (OA = 96.8%) [35], and eliminated about 60 000
ha of high biomass crops (forest area decreased from 2.11 to
2.05 million ha). Based on these analyses, we recommend that
the image acquisition dates be considered in the context of crop
type, phenology, and biomass dynamics in a study area before
mapping with the PALSAR/PALSAR-2 data.

A slight overestimation of forest area was found in 2009 in
regions with elevations less than 400 m, even when filtering
with FHarvest < 5% [see Fig. 6(f)]. The overestimation led to a
high forest gain (162 300 ha) from 2008 to 2009 and net forest
loss (2333 ha) from 2009 to 2010. This overestimation may be
caused by the existence of high biomass banana plantations in
September [see Fig. 12(c)], which have high NDVI and LSWI
values, therefore cannot be removed by rule of FHarvest < 5%
[see Fig. 12(e)]. On Hainan Island, most banana plants are
antiseason with harvest occurring between May and July to
avoid an overlapping harvest with banana in mainland China.
Unlike sugarcane, whose complete biomass is harvested each
year, a complete removal of banana plant biomass usually takes
2–3 years since farmers continue rotation with offshoots that
developed from base. Therefore, it is not easy to eliminate ba-
nana plantations harvested between May and July with limited
cloud-free optical images, if they were already classified as for-
est by PALSAR/PALSAR-2 images.

In addition, some eucalyptus plantations along the western
coastline have almost no understory due to the salty and in-
fertile soil and dry climate [see Fig. 12(d)]. These plantations
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Fig. 11. Schematic of removing high biomass corps in PALSAR-based F/NF map based on the frequency criteria of NDVI < 0.5 and LSWI < 0 .1(FHarvest):
(a) False color composite of Landsat TM imagery on 03/24/2010 (R/G/B = band 5/4/3) in western region of Hainan Island, China, (b) PALSAR-based F/NF map
in 2009 after NDVIm ax filtering, (c) spatial distribution of FHarvest derived from TM/ETM+ images acquired during 2008–2009 and day-of-year between 90 and
365, and (d) PALSAR/Landsat F/NF map derived from PALSAR-based F/NF map after NDVIm ax > 0.65 and FHarvest < 5% filtration.

sometimes have much lower values of NDVI and LSWI, espe-
cially in the dry season [see Fig. 12(f)], and were removed by
the FHarvest < 5% threshold even though they were classified as
forest by PALSAR/PALSAR-2 data. Therefore, we have slightly
underestimated the forest area in arid regions along the western
coast. To avoid large areas of underestimation, studies should
consider the climate and forest conditions of a study area when
applying our algorithm to other regions.

B. Comparison Between PALSAR/Landsat and Other
Optical-Based F/NF Maps

The PALSAR/Landsat F/NF map in 2010 had a good agree-
ment with the F/NF maps of FROM-GLC, GlobeLand30, and
NLCD for most of the island [see Fig. 5(c)–(e)]. Forest area from
the PALSAR/Landsat F/NF maps was significantly correlated
with that of the optical-based F/NF maps at the county scale
(R2 = 0.81--0.91). At the 30 m scale, the PALSAR/Landsat
F/NF had higher accuracy (OA > 96%) than the optical-
based F/NF maps from FROM-GLC and GlobeLand30 (OA
= 88–90%) (see Table II). The good performance of PAL-
SAR/Landsat F/NF map is due to the incorporation of both opti-
cal and SAR data. The differences among the PALSAR/Landsat,
FROM-GLC, and GlobeLand30 F/NF maps, and NLCD can be
explained by forest definition, data source, and the algorithms
used for mapping [31]. For example, the FROM-GLC F/NF map
was generated using a random forest method of classification
[20], and the GlobeLand30 was derived from pixel- and object-
based methods with a knowledge approach with a minimum

mapping unit of 8 × 8 30 m pixels for forest [10], while the
NLCD was mainly obtained using a human–computer interac-
tive method [56].

C. Forest Dynamic on Hainan Island During 2007 and 2015

The PALSAR data were stable during 2007 and 2010 (see
Fig. S5) and PALSAR-2 was consistent with its predecessor.
Thus, the annual PALSAR/Landsat forest maps derived from
the algorithm can serve as a reliable data source for annual for-
est dynamic analysis (see Table II and Fig. 8). Forest gain from
2007 to 2015 was mainly due to the expansion of industrial
plantations such as natural rubber, eucalyptus, and orchard. The
dense forest gains (in blue) along the western and northern areas
of the island [see Fig. 9(I)] were mainly rubber and eucalyptus
because of a favorable climate and environment. In the 2000s,
rubber plantations, especially privately owned plantations, in-
creased significantly due to rapid increases in the price of natural
rubber [57]. According to the statistical yearbooks, net growth
of rubber plantations from 2007 to 2015 was 105 000 ha [39],
[58]. Fig. 9(A)–(e) clearly demonstrates the expansion of rubber
plantations. Only a few rubber plantations existed in 2007 [see
Fig. 9(A)–(a)], and the rubber plantation area increased slightly
in 2010 [see Fig. 9(C)–(c)], but almost completely covered this
region in 2015 [see Fig. 9(D)–(d)]. In addition, eucalyptus plan-
tations on Hainan Island have increased significantly since 1997,
when policies began to encourage eucalyptus plantations for in-
dustrial use. The area of eucalyptus plantations reached 100 000
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Fig. 12. Illustration of uncertainties from banana plantations not harvest during May to July and eucalyptus plantation without understory: (a) and (b) spatial
distribution of banana (19.8137 °N, 109.6848 °E) and eucalyptus (19.5049 °N, 109.8355 °E) plantations from Google VHSR images, respectively; (c) and (d) field
photos of corresponding banana and eucalyptus plantations taken on October 16, 2016, respectively; (e) and (f) NDVI, EVI, and LSWI time series of corresponding
banana and eucalyptus plantations from January 1, 2015 to December 31, 2016, respectively.

ha in 2006 and continued to increase by ∼(25 000–40 000) ha
per year [59].

Forest losses can be attributed to urbanization, removing old
rubber plantations, and regular harvesting of eucalyptus plan-
tations. The northeastern corner of Hainan Island (The capital
Haikou and Wenchang City), for example, experienced dramatic
deforestation in recent years due mainly to urbanization, such
as of hotel and resort construction and the development of real
estate [see Figs. 9(G)–(j) and S9]. In addition, about 170 000 ha
rubber plantations have been planted between 1975 and 1990
[60]. These plantations have been gradually removed after 2005
because rubber trees have an economic life cycle of about 25–35
years. In addition, the elevations at which more than 95% forest
gains and losses (see Table IV) are concentrated (<400 m) are
quite consistent with the recommended elevation (<350 m) for
rubber tree plantations on Hainan Island [61]. The expansion of
rubber and eucalyptus plantations on the island contributed sub-
stantially to the observed increase of forest cover in this study.

V. CONCLUSION

In this study, we found that the forest mapping algorithm
based on ALOS PALSAR and time series Landsat TM/ETM+
imagery can be readily applied to ALOS2 PALSAR-2 and
time series Landsat ETM+/OLI imagery. The PALSAR-2,
PALSAR, and Landsat series data have good consistency, so
a uniform algorithm can be used to track forest dynamics in
the tropics. In addition, we found that high biomass crops

like sugarcane and banana plantations may be misclassified
as forest if only L-band SAR imagery is used in the seasons
when crops have high biomass. However, these commission
errors can be effectively eliminated using the phenology-based
metrics derived from the time series Landsat imagery using
crop harvest frequency map. By integrating the ALOS/ALOS-2
L-band SAR and time series Landsat TM/ETM+/OLI imagery,
annual forest maps of Hainan Island from 2007 to 2015 (OA =
92–97%) were obtained. The area of forest gain, loss, and net
change on Hainan Island during 2007 and 2015 was 415 000
ha (+2.17% yr–1), 179 000 ha (–0.94% yr–1), and 236 000
ha (+1.23% yr–1), respectively. Over 95% of the forest gain
and loss occurred in those areas with an elevation less than
400 m, due mainly to the expansion of rubber and eucalyptus
plantations as well as urbanization. In summary, this study has
demonstrated the potential of integrating 25 m ALOS/ALOS-2
and time series Landsat imagery for the purposes of quantifying
annual forest dynamics in tropical regions. Future efforts
are needed to apply and evaluate the algorithms to track and
monitor tropical forest dynamics in other tropical regions.
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