
J. Geogr. Sci. 2017, 27(4): 387-402 

DOI: 10.1007/s11442-017-1383-7 

© 2017    Science Press    Springer-Verlag 

                    

Received: 2016-08-20  Accepted: 2016-10-12 
Foundation: National Key Research and Development Program of China, No.2016YFC0503500, No.2016YFC0503700 
Author: Yan Huimin (1974–), PhD, specialized in land use change. E-mail: yanhm@igsnrr.ac.cn 
*Corresponding author: Liu Fang (1984–), PhD, specialized in land use change. E-mail: fangliu2015@gmail.com 

   www.geogsci.com   www.springerlink.com/content/1009-637x 

Status of land use intensity in China and its  
impacts on land carrying capacity 

YAN Huimin1,2, *LIU Fang1, LIU Jiyuan1, XIAO Xiangming3,4, QIN Yuanwei3 

1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;  
2. University of Chinese Academy of Sciences, Beijing 100049, China; 
3. Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, 

OK 73019, USA;  
4. Institute of Biodiversity Science, Fudan University, Shanghai 200433, China 

 

Abstract: Land use intensity quantifies the impacts of human activities on natural ecosystems, 
which have become the major driver of global environmental change, and thus it serves as an 
essential measurement for assessing land use sustainability. To date, land-change studies 
have mainly focused on changes in land cover and their effects on ecological processes, 
whereas land use intensity has not yet received the attention it deserves and for which spa-
tially-explicit representation studies have only just begun. In this paper, according to the de-
gree and reversibility of surface disturbance by human activities, there are four main classes 
of land use intensity: artificial land, semi-artificial land, semi-natural land, and natural land. 
These were further divided into 22 subclasses based on key indicators, such as human pop-
ulation density and the cropping intensity. Land use intensity map of China at a 1-km spatial 
resolution was obtained based on satellite images and statistical data. The area proportions 
of artificial land, semi-artificial land, semi-natural land, and natural land were 0.71%, 19.36%, 
58.93%, and 21%, respectively. Human and economic carrying capacity increased with the 
increase of land use intensity. Artificial land supports 24.58% and 35.62% of the total popula-
tion and GDP, using only 0.71% of the total land, while semi-artificial land supported 58.24% 
and 49.61% of human population and GDP with 19.36% of China’s total land area.  

Keywords: land use intensity; land carrying capacity; classification system; spatial pattern 

1  Introduction 

Land use change has become an important driver of biodiversity change and the stability of 
ecosystem services (Blüthgen et al., 2012; Laliberté et al., 2010; Verburg et al., 2013). Im-
portantly, however, land use change encompasses two aspects: changes in land cover and 
land use intensity (Erb et al., 2014). Current research in land use science has mainly focused 
on land cover change and its impacts on processes such as climate change (Lambin et al., 
2000, 2001), biodiversity maintenance (Allan et al., 2014), and ensuring food security (Ver-
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burg et al., 2013). Changes in land use intensity – i.e., those subtle but important differences 
within the same category or unit class of land cover – can have profound impacts on carbon, 
nitrogen, and water cycles, and on biodiversity and ecological services too, but they have 
been overlooked until a decade ago (Burney et al., 2010; FAOSTAT, 2011; Green et al., 
2005; Sala et al., 2000). Additionally, due to human population growth and increased food 
consumption that together exacerbate the scarcity of land resources (Dai and Zhu, 2013), the 
sustainable intensification of land use has become a prime pathway to achieve long-term 
food and environmental security in China (Foley et al., 2011; Kuemmerle et al., 2013). 
However, it still remains impossible to accurately quantify the impacts of land use changes 
on ecological changes and to evaluate the land carrying capacity based solely on land cover 
maps. The classification methods should be developed to measure the intensity of land use, 
while these methods should be robust enough to quantify changes in land use intensity in 
terms of its spatial and temporal patterns, landscape structure, and reversibility of change 
(Ellis et al., 2010; van Asselen and Verburg, 2012; Verburg et al., 2009; Erb et al., 2014).  

Limited land resources and continued population growth, coupled to their related in-
creases in land-based products and services, will ultimately lead to land use intensification 
(Jiang et al., 2013). Population pressure (Boserup, 1965) and the resulting market incentives 
it generates (Shriar, 2005; Stone, 2001) will stimulate improvement in the output efficiency 
of existing land resources by modifying key agricultural practices, such as watering regimes, 
and agronomic inputs of fertilization and pesticide. These driving factors of land use intensi-
fication will in turn determine the spatial differentiation of land use intensity. Therefore, it is 
sensible to envision that a robust land use classification system should be constructed based 
not only on the increased demands upon the land but also on agricultural management. Ellis 
and Ramankutty (2008) developed the first global land use intensity map by combining 
maps of land cover, irrigation distribution, and population density. Later, Van Asselen and 
Verburg (2012) classified and mapped land systems at a global scale based on agricultural 
areas and natural vegetation. Similarly, Václavík et al. (2013) mapped global land system 
based on compiled datasets of land use intensity and of prevailing environmental and socio-
economic conditions. Nevertheless, our understanding of the spatial patterns of land use in-
tensity in most regions remains weak (Erb et al., 2013; Kuemmerle et al., 2013). In particu-
lar, detailed monitoring datasets and spatially explicit maps are required to characterize land 
use intensity (Zhu and Sun, 2014). Unfortunately, current land use intensity datasets are only 
available at a coarse resolution (10 km), thus precluding the detailed information needed on 
the spatial heterogeneity of land use intensity. Additionally, most research into cropland use 
intensity is performed by integrating information on patterns of irrigation and livestock 
population density, neglecting the important characterization of the intensity of the cropping 
process itself.  

At the turn of this century, China embarked on new paths of urbanization and industriali-
zation, and underwent a transition from land market formation to ensuring cultivated land 
protection and ecological development (Xu et al., 2003). Therefore, land use intensity in 
China presented new features in this period: accelerated urbanization led to the urban en-
croachment on farmland (Liu et al., 2010); regional development strategies such as “Grand 
Western Development Program,” “Revitalization of Northeast China,” and “Rise of Central 
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China” accelerated labor migration (Liu et al., 2010), and the resulting decreased farmer 
labor would leave more extensively used agricultural areas (Xie and Jiang, 2016); the im-
plementation of national agricultural supporting policies would encourage farmers to grow 
grain crops (Song and Ouyang, 2012) for more intensive farmland use (Jiang et al., 2013); 
national key forestry and ecological protection projects gained new forest, while large areas 
of native forests were converted into cash crops (Li et al., 2007); “Returning Grazing Land 
to Grassland Project” had restored grassland ecosystem to a certain extent (Zhang et al., 
2015), but the livestock and forage balance management policy would promote the conver-
sion from native grassland to artificial grassland, leading to more intensive use of grassland 
(Xu, 2014). Hence, a clear and detailed understanding of land use intensity in China for the 
year 2000 is a primary task to achieve harmony among ecological, economic, and social 
systems, which will provide a baseline reference for evaluating future change and its sus-
tainability. However, current research in China often targets cropland and built-up land, 
leaving other land types less studied. Household surveys and field questionnaires at provin-
cial and regional scales (Hao and Li, 2011; Hua et al., 2013) may provide detailed represen-
tations of land use intensity, but they are not suitable over a broad geographical area because 
they are labor- and time-intensive. Instead, for such large-scale analysis, the agricultural 
censuses available at the provincial and county scales have been widely used to map land 
use intensity without detailed spatial variations (Chen and Li, 2009; Li and Fang, 2014; Liu 
and Li, 2006; Wu and Qu, 2007; Yao et al., 2014; Zhang et al., 2005). So far, however, map-
ping land use intensity at a fine spatial resolution with national coverage has not been re-
ported in China.  

By integrating land use datasets with spatially explicit indicators, we first developed a 
land use intensity classification system and then mapped land use intensity in China at a 1-km 
spatial resolution. Second, the spatial differentiation of land use intensity was characterized 
at three relevant scales of interest: national, regional, and provincial. Third, and finally, the 
linkages between land use intensity and land carrying capacity were explored and examined. 
The study provides the methodology and data basis for a trajectory dynamics analysis of 
land use intensity as driven by economic development and ecological protection, and there-
by offers timely guidance for sustainable land management.  

2  Data and methodology 

2.1  Data sources and processing 

Spatially explicit indicators crucial for measuring land use intensity included the following: 
land use, irrigated and rain-fed croplands, cropping intensity, human population density, and 
livestock population density. For the linkage analysis between land use intensity and land 
carrying capacity, in addition to human population density, the gross domestic product (GDP) 
and net primary productivity (NPP) were also applied.  

2.1.1  Land use 

The land use map for 2000 was obtained from China’s National Land Use/Cover Dataset 
(NLCD). The dataset used a mapping scale of 1:100,000, and it was generated from the ma-
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manual digitalization of Landsat TM/ETM images acquired in 1999/2000, which were cross 
validated through extensive field survey datasets (Liu et al., 2014). A grid fraction dataset at 
a 1-km spatial resolution was obtained by calculating the area fractions of each land use type.  

2.1.2  Irrigated and rain-fed croplands 

This dataset came from Global Food Security-Support Analysis Data (GFSAD1000 V1.0, 
http://geography.wr.usgs.gov/science/croplands/), and was derived at the nominal 1-km scale 
based on current global cropland products having reliable data quality (Friedl et al., 2010; 
Pittman et al., 2010; Thenkabail et al., 2009, 2011; Yu et al., 2013). The dataset was shown 
to be applicable to our study through a correlated analysis with statistical data at the county scale. 

2.1.3  Cropping intensity 

Cropping intensity refers to the crop frequency for a given cropland area on a per year basis, 
which is important to properly characterize the levels of cropland use intensity. National 
cropping intensity in 2000 derived from MODIS data using the peak detect method, which 
integrated the datasets of smoothed EVI time series (500 m, 8-day intervals) and 
agro-meteorological and phenology records (Yan et al., 2008, 2010, 2014). 

2.1.4  Human population density 

Human population has been widely used to indicate the intensity of human-environment 
interactions (Boserup, 1965; Ellis and Ramankutty, 2008). In this paper, human population 
density was used to quantify land use intensity in forests by overlaying a human population 
density map to a forest map. County-level human population density was applied to measure 
the intensity of water use. The gridded population density database of China in 2000 was 
provided by Data Center for Resources and Environmental Science, Chinese Academy of 
Sciences (RESDC) (http://www.resdc.cn). The grid cell (1 km2) represented the total popu-
lation within a given square kilometer. Furthermore, the gridded Population of the World 
(GPW) (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3) was used to fill in the missing 
data for Taiwan. Following the study done by Ellis and Ramankutty (2008), human popula-
tion density was divided into three levels: a high population density (> 100 persons/km2), a low 
population density (1–100 persons/km2), and negligible population density (< 1 person/km2). 

2.1.5  Livestock population density 

Differences in livestock population density can help distinguish grassland use intensity. The 
livestock population density dataset came from Gridded Livestock of the World (GLW), at a 
spatial resolution of 1 km (Robinson et al., 2014). The database contained the global distri-
bution maps for the main species of livestock, which was created by integrating multi-source 
datasets. The measure of Tropical Livestock Units (TLU) was used to aggregate different 
livestock types and sizes (Petz et al., 2014). We classified TLU into three levels based on a 
Jenks natural break optimization technique: a high population density (>10 TLU/km2), a low 
population density (1–10 TLU/km2), and negligible population density (<1 TLU/km2). 

2.1.6  Net primary productivity 

National NPP data in 2000 at a spatial resolution of 500 m was simulated using the Vegeta-
tion Photosynthesis Model (VPM). The remote sensing-based light use efficiency model had 
been developed by Xiao et al. (2004a, 2004b); it used MODIS data and flux observation 
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data. The data was resampled to a fixed scale of 1 km for spatial consistency and used with 
the land use intensity results. 

2.1.7  Gross domestic product 

The gridded GDP map of China in 2000 was provided by the Data Center for Resources and 
Environmental Science, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). The 
1-km grid cell represented the total GDP within a given square kilometer.  

2.2  Land use intensity classification system 

As defined by Anderson et al. (1976), the ideal land use intensity classification system 
should meet the following criteria: (1) be applicable over extensive areas; (2) have compre-
hensive classes covering the whole area; (3) have hierarchical classes allowing subcategories 
aggregation and categories disaggregation; (4) use a classification procedure repeatable by 
different operators at any time; (5) have a dominant class in each grid cell.  

Land use intensity measures the impact of human activities on natural ecosystems, so its 
associated metrics should reflect the spatial pattern, temporal intensity, landscape structure, 
and degree of reversibility of human effects. According to the degree and reversibility of 
land surface disturbance by human activities, we divided land use into four main classes 
(Table 1): (1) artificial land, i.e., impervious surface area with irreversible effects; (2) 
semi-artificial land, characterized by surface soil that is frequently disturbed; (3) semi- 
natural land, characterized by occasionally disturbed surface soil but frequently disturbed 
vegetation; (4) natural land, with no human disturbance of the surface soil and native vege-
tation. These four classes were further divided into 22 subclasses. Artificial land was divided 
into two categories: urban vs. village and others. Semi-artificial land consisted of triple- 
cropping paddy, double-cropping paddy, single-cropping paddy, irrigated triple-cropping 
dryland, irrigated double-cropping dryland, irrigated single-cropping dryland, rain-fed tri-
ple-cropping dryland, rain-fed double-cropping dryland, rain-fed single-cropping dryland, 
and fallow land according to their combined cropping intensity and water conditions. 
Semi-natural land was classified into three levels (high intensity, low intensity, and natural) 
each for forest, grassland, and water body types according to local human population density. 
Natural land referred to unused land including sandy land, Gobi, salina, wetland, bare soil, 
and bare rock.  

3  Results  

3.1  Spatial patterns of land use intensity in China 

Spatial patterns of land use intensity at the national, provincial and county scales were ana-
lyzed to characterize the spatial differentiation of land use intensity. 

3.1.1  Land use intensity at the national scale 

In China, semi-natural land covered the majority China’s land surface, at 58.93%, followed 
by natural land (20.99%) and semi-artificial land (19.36%), while artificial land covered the 
least proportion (0.71%). Urban, as well as village and others, both covered a similar pro-
portion of artificial land area. Considering semi-artificial land, rain-fed single-cropping dry-
land covered the greatest area proportion (34.69%), followed by irrigated single-cropping  
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Table 1  Land use intensity classification system 

Class Subclass Description 

Urban Dense built environments with very high population density Artificial land 
(Built-up land) 

Village and others Rural settlements, factories, and transportation facilities with high 
population but fragmented landscape 

Triple-cropping paddy Cropland mainly for triple paddy rice 

Double-cropping paddy Cropland mainly for double paddy rice 

Single-cropping paddy Cropland mainly for single paddy rice 

Irrigated triple-cropping dryland Dryland mainly for irrigated triple crop 

Irrigated double-cropping dryland Dryland mainly for irrigated double crop 

Irrigated single-cropping dryland Dryland mainly for irrigated single crop 

Rain-fed triple-cropping dryland Rain-fed dryland with triple cropping 

Rain-fed double-cropping dryland Rain-fed dryland with double cropping 

Rain-fed single-cropping dryland Rain-fed dryland with single cropping 

Semi-artificial 
land (Cropland) 

Fallow land Cropland left idle during the growing season 

High intensity forest Forest with high human population density (>100 persons/km2) 

Low intensity forest Forest with low human population density (1–100 persons/km2) 

Natural forest Forest with negligible human population density (>1 person/km2) 

High intensity grassland Grassland with high livestock population density (>10 TLU/km2) 

Low intensity grassland Grassland with low livestock population density (1–10 TLU /km2) 

Natural grassland Grassland with negligible livestock population density (<1 TLU /km2) 

High intensity water body Water body located in county with high human population density 
(>100 persons/km2) 

Low intensity water body Water body located in county with low human population density 
(1–100 persons/km2) 

Semi-natural 
land (Forest, 
Grassland, 

Water body) 

Natural water body Water body located in county with negligible human population 
density (<1 person/km2) 

Natural land 
(Unused land) 

Unused land Sandy land, Gobi, salina, wetland, bare soil and bare rock 

 
dryland (18.29%). Among different land cover types of semi-natural land, the highest inten-
sity occurred under water body, for which area proportions of high and low intensity levels 
were 32.17% and 43.21%, respectively. Ranked second in intensity after water body was 
grassland, for which area proportions of high and low intensity were 23.46% and 34.54%, 
respectively. Among forest types, natural forest accounted for the largest area proportion 
(56.09%), followed by low (24.83%) and high (24.83%) intensity forest. 

Spatial patterns in land use intensity showed that, as indicated by the boundary of Hu 
Line, the southeastern part with its denser human population was more intensively used than 
the northwestern part with its sparse population (Figure 1). Statistics on land use intensity 
classes were performed every 1°, in both latitudinal and longitudinal directions. In the latitu-
dinal direction, the area proportion of natural land between 31.5°N and 39.5°N latitude ac-
counted for over 20%, and reached its peak value between 35.5°N and 37.5°N latitudes 
wherein the Taklimakan desert was located. In the longitudinal direction, a transition in the 
dominant land use intensity class was from natural and semi-natural land to semi-natural and 
semi-artificial land with the increment of longitude.  
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Figure 1  Land use intensity map of China in 2000. Ecological Regions include Northeast Region (I), Inner Mongo-
lia and the Great Wall Region (II), Huang-Huai-Hai Region (III), Loess Plateau Region (IV), Middle and Lower Reaches 
of the Yangtze River Region (V), Southwest Region (VI), South China Region (VII), Gan-Xin Region (VIII) and Qing-
hai-Tibet Region (IX).  
 

3.1.2  Land use intensity at regional scale 

Land use intensity classes showed remarkable spatial differentiation across different Eco-
logical Regions (henceforth refer to both Table 2 and Figure 2). Artificial land was mainly 
distributed in Huang-Huai-Hai Region, Middle and Lower Reaches of the Yangtze River 
Region, South China Region, and Northeast Region. In particular, Huang-Huai-Hai Region 
had the largest area of built-up land, while Middle and Lower Reaches of the Yangtze River 
Region and Sichuan Basin had a higher intensity, with urban area accounting for >70% of 
the built-up area. Semi-artificial land was primarily located in Huang-Huai-Hai Region, 
Middle and Lower Reaches of the Yangtze River Region, and Northeast Region. Middle and 
Lower Reaches of the Yangtze River Region, South China Region, and Sichuan Basin had 
the highest cropland use intensity wherein paddy rice farming accounted for 71.29%, 
45.70%, and 30.42% of cropland area in use, respectively. Cropland with multiple cropping 
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Table 2  Proportions of land area under four land use intensity classes in 9 ecological regions of China (%) 

Regions Artificial land Semi-artificial land Semi-natural land Natural land 

Northeast Region 13.20 17.88 10.12 2.20 

Inner Mongolia and the Great Wall Region 5.42 8.74 10.22 2.87 

Huang-Huai-Hai Region 35.57 19.22 1.09 0.11 

Loess Plateau Region 5.10 8.81 4.23 0.07 

Middle and Lower Reaches of the Yangtze 
River Region 

15.98 18.81 10.80 0.10 

Southwest Region 4.64 14.65 12.99 0.03 

South China Region 13.62 6.15 6.56 0.02 

Gan-Xin Region 5.78 5.07 12.89 70.93 

Qinghai-Tibet Region 0.70 0.66 31.09 23.67 

 

 
 

Figure 2  Area proportions of the 22 land use intensity subclasses distributed in 9 ecological regions of China 
 

practices accounted for 58.11%, 64.35%, and 44.57% of the area in these regions, respec-
tively. Beyond these regions, Huang-Huai-Hai Region had 76% sum of irrigated dryland and 
paddy rice, and comparable proportions of single- and double-cropped land which added up 
to 98.40% of the total cropland.  

Irrigated dryland and paddy rice added up to 46.02% of the total cropland in Northeast 
Region, in which 13.40% of the area was single-cropping paddy rice. Where dominated by 
the single-cropping practice, Inner Mongolia and the Great Wall Region, Qinghai-Tibet Re-
gion, Loess Plateau Region, and Gan-Xin Region had the lowest cropland use intensity with 
rain-fed dryland accounting for 86.94%, 72.92%, 68.86%, and 63.08% of the total cropland, 
respectively. Qinghai-Tibet Region had the largest area of semi-natural land, followed by 
Southwest Region, and Gan-Xin (Gansu-Xinjiang) Region. Huang-Huai-Hai Region had the 



YAN Huimin et al.: Status of land use intensity in China and its land carrying capacity 395 

 

 

highest proportion of high intensity level of semi-natural land (55.94%), while Northeast 
Region and Qinghai-Tibet Region had lower intensity with natural land covering the largest 
area proportion.  

Forest was mainly distributed in the Northeast Region, Middle and Lower Reaches of the 
Yangtze River Region, Southwest Region, and South China Region. However, Middle and 
Lower Reaches of the Yangtze River Region and Southwest Region had the highest intensity, 
with high and low intensity forest covering 63.47% and 62.41% of the total forest area, re-
spectively. South China Region ranked second, with high and low intensity forest together 
accounting for 52.92%. The Northeast Region was dominated by natural forest, which ac-
counted for 78.28% of the total forest area found in this region. Grassland use intensity de-
creased in the following order: Inner Mongolia and the Great Wall Region, Gan-Xin Region, 
and Qinghai-Tibet Region. Inner Mongolia and the Great Wall Region had the largest pro-
portion of high intensity grassland, which accounted for 38.01% of total grassland in this 
region. Natural land covered the largest proportion (58.51%) in Qinghai-Tibet Region, with 
high intensity grassland distributed in local area. Water body in Middle and Lower Reaches 
of the Yangtze River Region had the highest land use intensity because of its dense human 
population; meanwhile, Huang-Huai-Hai Region was found to have high pressure on its wa-
ter resources. Natural land was concentrated in Gan-Xin Region and Qinghai-Tibet Region, 
both of which have sparse human populations. Not surprisingly, Gan-Xin Region had the 
largest natural land because it contains a vast desert.  

3.1.3  Land use intensity at the provincial scale 

Significant spatial variation in land use intensity was also observed among the provinces in 
China (Figure 3). Considering artificial land, Shandong province had the largest area pro-
portion of it followed by Jiangsu province, Hebei province, Guangdong province, and Henan 
province, which had proportions of 12.03%, 8.87%, 8.85%, 7.84%, and 7.07%, respectively. 
The area of semi-artificial land in provinces of Heilongjiang, Henan, Sichuan, Shandong, 

 
 

Figure 3  Area statistics on the land use intensity classes in each province of China 
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Inner Mongolia, and Hebei exceeded 10 × 104 km2 in each case. Semi-natural land was 
widely distributed in Tibet, Inner Mongolia, and Xinjiang with corresponding area propor-
tions of 18.36%, 12.82%, and 10.05% of total semi-natural land in China. Notably, 50.05% 
of natural land in China was located in Xinjiang, followed by Inner Mongolia and then Tibet. 
Artificial land exceeded 10% in each of the following: Macao, Hong Kong, Shanghai, Tian-
jin and Beijing. The area proportions of semi-artificial land in provinces of Jiangsu, Shan-
dong, and Henan each exceeded 70%, while those of Tianjin, Hebei and Anhui each ex-
ceeded 50%. Semi-natural land covered 
most of the total area in Tibet, at 85.41%. 
The 17 provinces with an area proportion of 
semi- natural land exceeding 60% were 
mainly distributed in southern and western 
China. Natural land in Xinjiang accounted 
for 61.63%, which was much higher than 
seen for the other Chinese provinces. 

Provinces were divided into three catego-
ries according to their geographical loca-
tions: Eastern, Central, and Western (see 
Fang and Wang, 2015). The land use inten-
sity in the Eastern provinces was the highest, 
followed by Central and Western provinces. 
The total area with semi-natural and 
semi-artificial land in both Eastern and 
Central provinces together amounted to 96%. 
In contrast, the Western provinces were 
mainly featured with semi-natural land and 
natural land, which together added up to 90% 
of the total area (Figure 4). In terms of the 
land use intensity subclasses (Figure 5), the 
Eastern provinces had average proportions 
of urban, villages and others, paddy rice, 
irrigated cropland, and high intensity forest 
that exceeded counterparts in Central and 
Western provinces. The area proportion of 
irrigated dryland was greater than that of 
paddy rice in Central provinces, whereas the 
unused land covered the largest proportion 
of area in Western provinces, followed by 
grassland. Finally, the area proportion of 
high intensity grassland in Western China 
exceeded that found in the Eastern and Central provinces. 

3.2  Linking China’s land use intensity to its land carrying capacity 

In order to explore the relationship between land use intensity and land carrying capacity, 

 
 

Figure 4  Proportions of the four land use intensity 
classes in Eastern, Central, and Western China 

 
 

Figure 5  Proportions of the land use intensity subcla-
sses in Eastern, Central, and Western China (diamonds 
are means, error bars depict min–max range) 
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indicators such as population carrying capacity, economic carrying capacity, supporting ca-
pacity, and land use efficiency were selected for this study. Population density and gross 
domestic product (GDP) represent the size of human and economy. Net primary productivity 
(NPP) indicates the supporting capacities of natural systems. The ratio of GDP to NPP quan-
tifies land use efficiency.  

Spearman rank correlation analysis showed that land use intensity was positively corre-
lated with population carrying capacity as well as the economic carrying capacity (r=0.902, 
p<0.01; r=0.876, p<0.01). In terms of land use intensity classes (Figures 6a and 6b, respec-
tively), artificial land had the highest carrying capacity for both human population and 
economy, with average values of 4755.20 persons/km2 and 5423.53×104 yuan/km2, 

 

 
 

Figure 6  Statistics on population carrying capacity (a), economic carrying capacity (b), NPP (c), and land use 
efficiency (d) at the different levels of land use intensity. Bars represent the area-weighted means, diamonds are 
medians; error bars depict inter-quartile range. 
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respectively. Artificial land supported 24.58% and 35.62% of the total population density 
and GDP, respectively, though it directly used only 0.71% of the total land area of China. 
The average population and economic carrying capacity of semi-artificial land was lower 
than that of artificial land. Although it accounted for just 19.36% of the total area in China, 
semi-artificial land supported 58.24% and 49.61% of the human population and GDP output, 
respectively. Population and economic carrying capacity of semi-natural land ranked third, 
with average values of 39.23 persons/km2 and 26.25×104 yuan/km2, supporting 16.89% and 
14.36% of the human population and GDP, respectively. Natural land had the lowest carry-
ing capacity for human population and economy. Furthermore, population and economic 
carrying capacity decreased across the subclasses of land use intensity. Specifically, the me-
dian value of human and economic carrying capacity decreased with a decline in the crop-
ping intensity of cropland. Similar trends were also detected for forest, grassland, and water 
body.  

Shown in Figure 6c is the significant variation of NPP among the different land use inten-
sity classes. Semi-artificial land had the highest value of average NPP (235.14 g Cm-2 a-1), 
which accounted for 49.18% of the total NPP. This is undoubtedly because agricultural prac-
tices, such as multiple cropping, irrigation and fertilizer use, have greatly increased the NPP 
of semi-artificial land by increasing the latter’s yields. In supporting 49.35% of the total NPP, 
semi-natural land had an average NPP of 201.53 g Cm-2 a-1, which was lower than that from 
semi-artificial land. Although semi-natural lands such as evergreen broadleaf forest and 
mixed broadleaf forests had higher NPPs than did semi-artificial land, the sparse forest, 
shrubs and grassland in semi-natural land typically had lower average NPPs because they 
experience smaller and fewer human disturbances coupled to their lower vegetation cover-
age. Natural land had the lowest average NPP, at 28.11 g Cm-2 a-1, largely because of its 
sparse vegetation coverage and vulnerable physical conditions with low precipitation regimes.  

The land use efficiency of semi-artificial lands averaged 0.26×10-2yuan·a·g-1C-1. This 
value was higher than that for semi-natural land. Specific to semi-artificial land, multiple 
cropped land had a higher land use efficiency than did single-cropped land. Water body had 
the highest land use efficiency among the semi-natural lands because of its mosaic water 
body and other productive areas. Natural land had the lowest use efficiency, at less than 
0.01×10-2 yuan·a·g-1C-1. In terms of land use intensity subclasses, land use efficiency in-
creased with land use intensity within semi-artificial, semi-natural, and natural lands (Figure 6d). 

4  Conclusions and discussion   

4.1  Conclusions 

Status and changes in land use intensity, as well as their profound consequences on envi-
ronmental land carrying capacity, have received increasing attention. By integrating remote 
sensing data with socio-economic data, a two-level hierarchical land use intensity classifica-
tion system was constructed according to the intensity of human impacts in this study. Then, 
the land use intensity in China in 2000 at a 1-km spatial resolution was obtained, and spatial 
patterns of land use intensity at national, regional, and provincial scales were also analyzed. 
Furthermore, the relationship between land use intensity and land carrying capacity was also 
explored. The main results from this study include: 



YAN Huimin et al.: Status of land use intensity in China and its land carrying capacity 399 

 

 

(1) Integrating information on land cover, human population distributions, and economic 
activities in agriculture, forestry, animal husbandry, and fishery, we constructed a two-level 
comprehensive land use intensity classification system. It could accurately represent the in-
tensity of human modification on the Earth’s land surface (in both space and time) according 
to the degree of surface disturbance by human activities and reversibility to natural land. The 
system included 4 classes and 22 nested subclasses. The main classes included artificial land, 
semi-artificial land, semi-natural land, and natural land. Artificial land was sub-classified 
based on the population distribution and degree of landscape fragmentation. Semi-artificial 
land was sub-classified based on information concerning the water conditions and cropping 
intensity. Semi-natural land was sub-classified considering the human population density 
and livestock population density. The cumulative area proportions of artificial land, 
semi-artificial land, semi-natural land and natural land were 0.71%, 19.36%, 58.93%, and 
21%, respectively. 

(2) Generally, land use in southeastern China, with its denser human population, was 
more intensive than that in the northwestern part with its sparse population. Huang-Huai-Hai 
Region had the largest area of artificial land but was inferior to Middle and Lower Reaches 
of the Yangtze River Region in its land use intensity. Semi-artificial land was widely distrib-
uted in Huang-Huai-Hai Region, Middle and Lower Reaches of the Yangtze River Region, 
and Northeast Region, but most intensively used in Middle and Lower Reaches of the Yang-
tze River Region, South China Region, and Sichuan Basin. Qinghai-Tibet Region had the 
largest area of semi-natural land. Natural land with the lowest intensity was concentrated in 
Gan-Xin Region and Qinghai-Tibet Region.  

(3) Human and economic carrying capacity and land use efficiency increased with land 
use intensity. Artificial land had the highest human and economic carrying capacity and land 
use efficiency, supporting 24.58% and 35.62% of the total population density and GDP, re-
spectively (using just 0.71% of the total land in China). Semi-artificial land supported 
58.24% and 49.61% of human population and GDP using 19.36% of China’s total land area. 
Semi-artificial land had the highest value of average NPP, accounting for 49.18% of the total 
NPP. Semi-natural land had lower land use efficiency, but it contributed more NPP supply 
than did semi-artificial land.  

4.2  Discussion 

There are several noteworthy differences between the present study and previous research on 
land use intensity classification systems and mapping. (1) We selected land use intensity 
metrics that were related to specific land cover types, e.g., grazing intensity of grassland was 
directly determined by livestock population density (Briske et al., 2015); felling intensity of 
forest was closely related to human population density (Pahari and Murai, 1999). (2) For 
cropland cover, we also investigated the cropping intensity, an important metric of cropping 
frequency (Erb et al., 2014), to better measure cropland use intensity. (3) We presented a 
high-resolution map quantifying the spatial distribution of land use intensity. Indicators used 
in measuring land use intensity were derived at a 1-km spatial resolution, except cropping 
intensity (resampled from 500 m to 1 km to be consistent with other indicators). The 1-km 
spatial resolution resultant map would effectively characterize the spatial heterogeneity of 
land use intensity and thus could help reduce uncertainty in earth system simulations. Unlike 
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current domestic research focusing on cropland and urban areas, our study took all land use 
types into account—this provided systematic and objective information for the impact as-
sessment of land use pattern and intensity on ecosystem resources and environmental carry-
ing capacity. Compared with previous land-change studies, that examined changes in land 
cover, our research focused on land use intensity, by integrating natural and human drivers 
of land system change to provide robust and much-needed spatial datasets for a deeper un-
derstanding of the underlying drivers and causes of historical changes in land systems and 
the impact upon them from human activities. Land use intensity is a paramount factor af-
fecting land use efficiency and land carrying capacity. Quantifying the relationship among 
them is of crucial and prime theoretical importance to better explore, understand, and dis-
cover land use change and sustainable land management options. 
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